• 1.

    Titanji BK , Tegomoh B , Nematollahi S , Konomos M , Kulkarni PA , 2022. Monkeypox: a contemporary review for healthcare professionals. Open Forum Infect Dis 9: ofac310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Centers for Disease Control and Prevention , 2022. 2022 U.S. Map & Case Count. Available at: https://www.cdc.gov/poxvirus/monkeypox/response/2022/us-map.html. Accessed October 21, 2022.

  • 3.

    Isidro J et al., 2022. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat Med 28: 15691572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Thornhill JP et al., 2022. Monkeypox virus infection in humans across 16 countries: April–June 2022. N Engl J Med 387: 679691.

  • 5.

    Davido B , D’Anglejan E , Jourdan J , Robinault A , Davido G , 2022. Monkeypox 2022 outbreak: cases with exclusive genital lesions. J Travel Med 29: taac077.

  • 6.

    Bizova B , Vesely D , Trojanek M , Rob F , 2022. Coinfection of syphilis and monkeypox in HIV positive man in Prague, Czech Republic. Travel Med Infect Dis 49: 102368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Hughes CM et al., 2020. A tale of two viruses: coinfections of monkeypox and Varicella zoster virus in the Democratic Republic of Congo. Am J Trop Med Hyg 104: 604611.

    • Search Google Scholar
    • Export Citation
  • 8.

    Osadebe L et al., 2017. Enhancing case definitions for surveillance of human monkeypox in the Democratic Republic of Congo. PLoS Negl Trop Dis 11: e0005857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    de Sousa D , Patrocinio J , Frade J , Correia C , Borges-Costa J , Filipe P , 2022. Human monkeypox coinfection with acute HIV: an exuberant presentation. Int J STD AIDS 33: 936938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Li Y , Olson VA , Laue T , Laker MT , Damon IK , 2006. Detection of monkeypox virus with real-time PCR assays. J Clin Virol 36: 194203.

  • 11.

    Li Y , Zhao H , Wilkins K , Hughes C , Damon IK , 2010. Real-time PCR assays for the specific detection of monkeypox virus West African and Congo Basin strain DNA. J Virol Methods 169: 223227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Centers for Disease Control and Prevention , 2022. Clinical Recognition: Key Characteristics for Identifying Monkeypox. Available at: https://www.cdc.gov/poxvirus/monkeypox/clinicians/clinical-recognition.html. Accessed October 21, 2022.

  • 13.

    Patel A et al., 2022. Clinical features and novel presentations of human monkeypox in a central London centre during the 2022 outbreak: descriptive case series. BMJ 378: e072410.

    • Search Google Scholar
    • Export Citation
  • 14.

    Fleming DT , Wasserheit JN , 1999. From epidemiological synergy to public health policy and practice: the contribution of other sexually transmitted diseases to sexual transmission of HIV infection. Sex Transm Infect 75: 317.

    • Crossref
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 3 3 1
Full Text Views 5555 5555 401
PDF Downloads 423 423 91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Case Report: Symptomatic Herpes Simplex Virus Type 2 and Monkeypox Coinfection in an Adult Male

Kavitha K. PrabakerDepartment of Clinical Epidemiology and Infection Prevention, UCLA David Geffen School of Medicine, Los Angeles, California;

Search for other papers by Kavitha K. Prabaker in
Current site
Google Scholar
PubMed
Close
,
Annabelle de St. MauriceDepartment of Clinical Epidemiology and Infection Prevention, UCLA David Geffen School of Medicine, Los Angeles, California;

Search for other papers by Annabelle de St. Maurice in
Current site
Google Scholar
PubMed
Close
,
Daniel Z. UslanDepartment of Clinical Epidemiology and Infection Prevention, UCLA David Geffen School of Medicine, Los Angeles, California;

Search for other papers by Daniel Z. Uslan in
Current site
Google Scholar
PubMed
Close
,
George C. YenDepartment of Internal Medicine, UCLA David Geffen School of Medicine, Los Angeles, California;

Search for other papers by George C. Yen in
Current site
Google Scholar
PubMed
Close
,
Shadi ManaviUCLA Health Primary Care Network, Los Angeles, California;

Search for other papers by Shadi Manavi in
Current site
Google Scholar
PubMed
Close
,
Hannah K. GrayDepartment of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, California

Search for other papers by Hannah K. Gray in
Current site
Google Scholar
PubMed
Close
,
Juan R. CalderaDepartment of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, California

Search for other papers by Juan R. Caldera in
Current site
Google Scholar
PubMed
Close
,
June L. ChanDepartment of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, California

Search for other papers by June L. Chan in
Current site
Google Scholar
PubMed
Close
,
Omai B. GarnerDepartment of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, California

Search for other papers by Omai B. Garner in
Current site
Google Scholar
PubMed
Close
, and
Shangxin YangDepartment of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, California

Search for other papers by Shangxin Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT.

A 39-year-old man presented with a history of fatigue, malaise, and rash with varied morphology on his perianal region. Polymerase chain reaction testing of the lesions confirmed coinfection with monkeypox and herpes simplex virus type 2. We emphasize the difficulty in distinguishing between monkeypox virus and herpes simplex virus type 2 based on history and examination alone.

Author Notes

Address correspondence to Kavitha K. Prabaker, Department of Clinical Epidemiology and Infection Prevention, UCLA David Geffen School of Medicine, 1260 15th St., Ste. 1119, Santa Monica, CA 90404. E-mail: kprabaker@mednet.ucla.edu

Financial support: This study was funded by the UCLA Department of Pathology and Laboratory Medicine.

Authors’ addresses: Kavitha K. Prabaker, Annabelle de St. Maurice, and Daniel Z. Uslan, Department of Clinical Epidemiology and Infection Prevention, UCLA David Geffen School of Medicine, Los Angeles, CA, E-mails: kprabaker@mednet.ucla.edu, adestmaurice@mednet.ucla.edu, and duslan@mednet.ucla.edu. George C. Yen, Department of Internal Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, E-mail: gcyen@mednet.ucla.edu. Shadi Manavi, UCLA Health Primary Care Network, Los Angeles, CA, E-mail: srafael@mednet.ucla.edu. Hannah K. Gray, J. R. Caldera, June L. Chan, Omai B. Garner, and Shangxin Yang, Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, E-mails: hkgray@mednet.ucla.edu, jfcaldera@mednet.ucla.edu, junechan@mednet.ucla.edu, ogarner@mednet.ucla.edu, and shangxinyang@mednet.ucla.edu.

Save