• 1.

    Wijesinghe C , Gunatilake J , Kusumawathie PHD , Sirisena PDNN , Daulagala SWPL , Iqbal BN , Noordeen F , 2021. Circulating dengue virus serotypes and vertical transmission in Aedes larvae during outbreak and inter-outbreak seasons in a high dengue risk area of Sri Lanka. Parasit Vectors 14: 614.

    • Search Google Scholar
    • Export Citation
  • 2.

    Harapan H , Michie A , Mudatsir M , Nusa R , Yohan B , Wagner AL , Sasmono RT , Imrie A , 2019. Chikungunya virus infection in Indonesia: a systematic review and evolutionary analysis. BMC Infect Dis 19: 243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    World Health Organization , 2022. Dengue and severe dengue. Available at: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue. Accessed November 1, 2021.

    • Crossref
    • Export Citation
  • 4.

    Guzman MG , Gubler DJ , Izquierdo A , Martinez E , Halstead SB , 2016. Dengue infection. Nat Rev Dis Primers 2: 16055.

  • 5.

    McFee RB , 2018. Selected mosquito-borne illnesses-Chikungunya. Dis Mon 64: 222234.

  • 6.

    Pathak H , Mohan MC , Ravindran V , 2019. Chikungunya arthritis. Clin Med 19: 381385.

  • 7.

    Carabali M , Jaramillo-Ramirez GI , Rivera VA , Possu NJM , Restrepo BN , Zinszer K , 2021. Assessing the reporting of dengue, chikungunya and zika to the national surveillance system in Colombia from 2014–2017: a capture-recapture analysis accounting for misclassification of arboviral diagnostics. PLoS Negl Trop Dis 15: 116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Gould E , Pettersson J , Higgs S , Charrel R , de Lamballerie X , 2017. Emerging arboviruses: why today? One Health 4: 113.

  • 9.

    Cattarino L , Rodriguez-Barraquer I , Imai N , Cummings DAT , Ferguson NM , 2020. Mapping global variation in dengue transmission intensity. Sci Transl Med 12: eaax4144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    de Brito CAA , Freitas ARR , Said RF , Falcão MB , da Cunha RV , Siqueira AM , Teixeira MG , Ribeiro GS , de Brito MCM , Cavalcanti LP de G , 2020. Classification of chikungunya cases: a proposal. Rev Soc Bras Med Trop 53: 15.

    • Search Google Scholar
    • Export Citation
  • 11.

    Pan-American Health Organization/World Health Organization , 2019. Epidemiological update. Available at: https://www3.paho.org/hq/index.php?option=com_docman&view=download&category_slug=dengue-2217&alias=50963-11-november-2019-dengue-epidemiological-update-1&Itemid=270&lang=en. Accessed January 8, 2022.

  • 12.

    de Lima STS et al., 2021. Fatal outcome of chikungunya virus infection in Brazil. Clin Infect Dis 73: e2436e2443.

  • 13.

    Real J , Regato M , Burgos V , Jurado E , 2017. Evolución del virus dengue en el Ecuador: Período 2000 a 2015 [Evolution of dengue virus in Ecuador 2000–2015]. An Fac Med (Perú) 78: 2935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Ministerio de Salud Publica , 2021. Gaceta vectores SE 12.

  • 15.

    Ministerio de Salud Publica , 2019. Gaceta vectores SE 52. Available at: https://www.salud.gob.ec/wp-content/uploads/2020/02/GACETA-VECTORES-SE-52.pdf. Accessed January 10, 2022.

    • Crossref
    • Export Citation
  • 16.

    Cevallos V , Ponce P , Waggoner JJ , Pinsky BA , Coloma J , Quiroga C , Morales D , Cardenas MJ , 2018. Zika and Chikungunya virus detection in naturally infected Aedes aegypti in Ecuador. Acta Trop 177: 7480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Eisenberg JNS et al., 2012. In-roads to the spread of antibiotic resistance: regional patterns of microbial transmission in northern coastal Ecuador. J R Soc Interface 9: 10291039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Cifuentes SG , Trostle J , Trueba G , Milbrath M , Baldeon ME , Coloma J , Eisenberg JNS , 2013. Transition in the cause of fever from malaria to dengue, northwestern Ecuador, 1990–2011. Emerg Infect Dis 19: 16421645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Zelner JL , Trostle J , Goldstick JE , Cevallos W , House JS , Eisenberg JNS , 2012. Social connectedness and disease transmission: social organization, cohesion, village context, and infection risk in rural Ecuador. Am J Public Health 102: 22332239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Eisenberg JNS et al., 2006. Environmental change and infectious disease: how new roads affect the transmission of diarrheal pathogens in rural Ecuador. Proc Natl Acad Sci USA 103: 1946019465.

    • Search Google Scholar
    • Export Citation
  • 21.

    Sierra R , 1999. Traditional resource-use systems and tropical deforestation in a multi-ethnic region in north-west Ecuador. Environ Conserv 26: 136145.

    • Search Google Scholar
    • Export Citation
  • 22.

    Waggoner JJ et al., 2016. Single-reaction multiplex reverse transcription PCR for detection of Zika, chikungunya, and dengue viruses. Emerg Infect Dis 22: 12951297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Harris E , Roberts TG , Smith L , Selle J , Kramer LD , Valle S , Sandoval E , Balmaseda A , 1998. Typing of dengue viruses in clinical specimens and mosquitoes by single-tube multiplex reverse transcriptase PCR. J Clin Microbiol 36: 26342639.

    • Search Google Scholar
    • Export Citation
  • 24.

    Wise EL et al., 2020. Oropouche virus cases identified in Ecuador using an optimised qRT-PCR informed by metagenomic sequencing. PLoS Negl Trop Dis 14: 115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Powers ARJ , 2010. Diagnostic Virology Protocols, 2nd edition. Totowa, NJ: Humana Press.

  • 26.

    Stoddard RA , Gee JE , Wilkins PP , McCaustland K , Hoffmaster AR , 2009. Detection of pathogenic Leptospira spp. through TaqMan polymerase chain reaction targeting the LipL32 gene. Diagn Microbiol Infect Dis 64: 247255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Kafetzopoulou LE et al., 2018. Assessment of metagenomic Nanopore and Illumina sequencing for recovering whole genome sequences of chikungunya and dengue viruses directly from clinical samples. Euro Surveill 23: 1800228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Menzel P , Ng KL , Krogh A , 2016. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun 7: 11257.

  • 29.

    Snounou G , 1996. Detection and identification of the four malaria parasite species infecting humans by PCR amplification. Methods Mol Biol 50: 263291.

    • Search Google Scholar
    • Export Citation
  • 30.

    Vera-Arias CA , Castro LE , Gómez-Obando J , Sáenz FE , 2019. Diverse origin of Plasmodium falciparum in northwest Ecuador. Malar J 18: 251.

  • 31.

    Wise EL et al., 2018. Isolation of Oropouche virus from febrile patient, Ecuador. United States.

    • Crossref
    • Export Citation
  • 32.

    Lee GO et al., 2021. A dengue outbreak in a rural community in Northern Coastal Ecuador: an analysis using unmanned aerial vehicle mapping. PLoS Negl Trop Dis 15: e0009679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Beltrán-Silva SL , Chacón-Hernández SS , Moreno-Palacios E , Pereyra-Molina , 2018. Clinical and differential diagnosis: dengue, chikungunya and Zika. Rev Med Hosp Gen (Mex) 81: 146153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Mohd Zim MA , Sam I-C , Omar SFS , Chan YF , AbuBakar S , Kamarulzaman A. , 2013. Chikungunya infection in Malaysia: comparison with dengue infection in adults and predictors of persistent arthralgia. J Clin Virol 56: 141145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Kuno G , 2015. A re-examination of the history of etiologic confusion between dengue and Chikungunya. PLoS Negl Trop Dis 9: e0004101.

  • 36.

    Laoprasopwattana K , Kaewjungwad L , Jarumanokul R , Geater A , 2012. Differential diagnosis of Chikungunya, dengue viral infection and other acute febrile illnesses in children. Pediatr Infect Dis J 31: 459463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Vong S et al., 2010. Dengue incidence in urban and rural Cambodia: results from population-based active fever surveillance, 2006–2008. PLoS Negl Trop Dis 4: e903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Fred A et al., 2018. Individual and contextual risk factors for chikungunya virus infection: the SEROCHIK cross-sectional population-based study. Epidemiol Infect 146: 10561064.

    • Search Google Scholar
    • Export Citation
  • 39.

    Chis Ster I , Rodriguez A , Romero NC , Lopez A , Chico M , Montgomery J , Cooper P , 2020. Age-dependent seroprevalence of dengue and chikungunya: inference from a cross-sectional analysis in Esmeraldas province in coastal Ecuador. BMJ Open 10: e040735.

    • Search Google Scholar
    • Export Citation
  • 40.

    Chow A , Ho H , Win M-K , Leo Y-S , 2017. Assessing sensitivity and specificity of surveillance case definitions for Zika virus disease. Emerg Infect Dis 23: 677679.

    • Search Google Scholar
    • Export Citation
  • 41.

    Sarti E , L’Azou M , Mercado M , Kuri P , Siqueira JBJ , Solis E , Noriega F , Ochiai RL. , 2016. A comparative study on active and passive epidemiological surveillance for dengue in five countries of Latin America. Int J Infect Dis 44: 4449.

    • Search Google Scholar
    • Export Citation
  • 42.

    World Health Organization , 2018. A Toolkit for National Dengue Burden Estimation. Geneva, Switzerland: WHO.

Past two years Past Year Past 30 Days
Abstract Views 1513 1513 37
Full Text Views 109 109 12
PDF Downloads 103 103 6
 
 
 
 
 
 
 
 
 
 
 

A Chikungunya Outbreak in a Dengue-endemic Region in Rural Northern Coastal Ecuador

Sully MárquezInstituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador;

Search for other papers by Sully Márquez in
Current site
Google Scholar
PubMed
Close
,
Gwenyth O. LeeDepartment of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan;

Search for other papers by Gwenyth O. Lee in
Current site
Google Scholar
PubMed
Close
,
Paulina AndradeColegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito, Quito, Ecuador;
Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California

Search for other papers by Paulina Andrade in
Current site
Google Scholar
PubMed
Close
,
Julio ZunigaDepartment of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan;

Search for other papers by Julio Zuniga in
Current site
Google Scholar
PubMed
Close
,
Gabriel TruebaInstituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador;

Search for other papers by Gabriel Trueba in
Current site
Google Scholar
PubMed
Close
,
Joseph N. S. EisenbergDepartment of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan;

Search for other papers by Joseph N. S. Eisenberg in
Current site
Google Scholar
PubMed
Close
, and
Josefina ColomaDivision of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California

Search for other papers by Josefina Coloma in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

ABSTRACT.

Dengue virus (DENV) reemerged in the Americas in the 1980s and 1990s, whereas chikungunya virus (CHIKV) emerged in 2014. Although CHIKV produced large epidemics from 2014 to 2017, dengue fever has been the prominent arboviral disease identified through passive surveillance, bringing to question the degree to which cases are misdiagnosed. To address this concern, we conducted an active household-based surveillance of arboviral-like illnesses in six rural and remote communities in northern coastal Ecuador from May 2019 to February 2020. Although passive surveillance conducted by the Ecuadorian Ministry of Health reported only DENV cases in the region, more than 70% of the arbovirus-like illnesses detected by active surveillance in our study were positive for CHIKV. These findings underline the need for active surveillance of arboviral infections with laboratory confirmation, especially in rural communities where arboviral illnesses are more likely to be underreported.

    • Supplemental Materials (PDF 532 KB)

Author Notes

Address correspondence to Josefina Coloma, Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA. E-mail: colomaj@berkeley.edu

These authors contributed equally to this work.

Financial support: This study was funded by the National Institute of Allergy and Infectious Diseases, National Institute of Health (R01 AI132372-02), titled “Zika and Dengue Co-circulation Under Environmental Change and Urbanization” and by Universidad San Francisco de Quito (USFQ) Collaboration Grant Hubi 12477, titled “Detección metagenomica de nuevos virus causantes de enfermedades febriles en la población de la Costa Ecuatoriana.”

Authors’ addresses: Sully Márquez and Gabriel Trueba, Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador, E-mails: smarqueza@usfq.edu.ec and gtrueba@usfq.edu.ec. Gwenyth O. Lee, Julio Zuniga, and Joseph N. S. Eisenberg, Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, E-mails: golee@umich.edu, julioz@umich.edu, and jnse@umich.edu. Paulina Andrade, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito, Quito, Ecuador, and Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, E-mail: paulinaandradeproano@berkeley.edu. Josefina Coloma, Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, E-mail: colomaj@berkeley.edu.

Save