• 1.

    Guzman MG , Harris E , 2015. Dengue. Lancet 385: 453465.

  • 2.

    Forshey BM et al., 2010. Arboviral etiologies of acute febrile illnesses in western South America, 2000–2007. PLoS Negl Trop Dis 4: 114.

  • 3.

    Moreira J , Bressan CS , Brasil P , Siqueira AM. , 2018. Epidemiology of acute febrile illness in Latin America. Clin Microbiol Infect 24: 827835.

  • 4.

    Vasconcelos PFC , Travassos da Rosa APA , Rodrigues SG , Travassos da Rosa ES , Dégallier N , Travassos da Rosa JFS , 2001. Inadequate management of natural ecosystem in the Brazilian Amazon region results in the emergence and reemergence of arboviruses. Cad Saude Publica 17: S155S164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Muñoz M , Navarro JC , 2012. Mayaro: a re-emerging arbovirus in Venezuela and Latin America. Biodmedica 32: 286302.

  • 6.

    Istúriz RE , Gubler DJ , del Castillo JB , 2000. Dengue and dengue hemorrhagic fever in Latin America and the Caribbean. Infect Dis Clin North Am 14: 121140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Ramos-Castañeda J , Barreto dos Santos F , Martínez-Vega R , Galvão de Araujo JM , Joint G , Sarti E , 2017. Dengue in Latin America: systematic review of molecular epidemiological trends. PLoS Negl Trop Dis 11: 124.

    • Search Google Scholar
    • Export Citation
  • 8.

    Song B-H , Yun S-I , Woolley M , Lee Y-M , 2017. Zika virus: history, epidemiology, transmission, and clinical presentation. J Neuroimmunol 308: 5064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Yactayo S , Staples JE , Millot V , Cibrelus L , Ramon-Pardo P , 2016. Epidemiology of Chikungunya in the Americas. J Infect Dis 214: S441S445.

  • 10.

    Guzmán-Terán C , Calderón-Rangel A , Rodriguez-Morales A , Mattar S , 2020. Venezuelan equine encephalitis virus: the problem is not over for tropical America. Ann Clin Microbiol Antimicrob 19: 18.

    • Search Google Scholar
    • Export Citation
  • 11.

    Acosta-Ampudia Y , Monsalve DM , Rodríguez Y , Pacheco Y , Anaya J-M , Ramírez-Santana C , 2018. Mayaro: an emerging viral threat? Emerg Microbes Infect 7: 111.

    • Search Google Scholar
    • Export Citation
  • 12.

    Mota MT de O , Ribeiro MR , Vedovello D , Nogueira ML , 2015. Mayaro virus: a neglected arbovirus of the Americas. Future Virol 10: 11091122.

  • 13.

    Romero-Alvarez D , Escobar LE , 2018. Oropouche fever, an emergent disease from the Americas. Microbes Infect 20: 135146.

  • 14.

    Aguilar PV et al., 2004. Endemic Venezuelan equine encephalitis in northern Peru. Emerg Infect Dis 10: 880888.

  • 15.

    Aguilar PV , Estrada-Franco JG , Navarro-Lopez R , Ferro C , Haddow AD , Weaver SC , 2011. Endemic Venezuelan equine encephalitis in the Americas: hidden under the dengue umbrella. Future Virol 6: 721740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Groot H , 1972. The health and economic importance of Venezuelan equine encephalitis (VEE). Pan Am Health Org 243: 7–16.

  • 17.

    Halsey ES , Siles C , Guevara C , Vilcarromero S , Jhonston EJ , Ramal C , Aguilar PV , Ampuero JS , 2013. Mayaro virus infection, Amazon Basin region, Peru, 2010–2013. Emerg Infect Dis 19: 18391842.

    • Search Google Scholar
    • Export Citation
  • 18.

    Azevedo RSS , Silva EVP , Carvalho VL , Rodrigues SG , Nunes-Neto JP , Monteiro H , Peixoto VS , Chiang JO , Nunes MRT , Vasconcelos PFC , 2009. Mayaro fever virus, Brazilian Amazon. Emerg Infect Dis 15: 18301832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Baisley KJ , Watts DM , Munstermann LE , Wilson ML , 1998. Epidemiology of endemic Oropouche virus transmission in upper Amazonian Peru. Am J Trop Med Hyg 59: 710716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Aguilar PV et al., 2011. Iquitos virus: a novel reassortant Orthobunyavirus associated with human illness in Peru. PLoS Negl Trop Dis 5: 110.

    • Search Google Scholar
    • Export Citation
  • 21.

    Ladner JT et al., 2014. Genomic and phylogenetic characterization of viruses included in the Manzanilla and Oropouche species complexes of the genus Orthobunyavirus, family Bunyaviridae. J Gen Virol 95: 10551066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Morgan J , Strode C , Salcedo-Sora JE , 2021. Climatic and socio-economic factors supporting the co-circulation of dengue, Zika and chikungunya in three different ecosystems in Colombia. PLoS Negl Trop Dis 15: 129.

    • Search Google Scholar
    • Export Citation
  • 23.

    Carabali M , Jaramillo-Ramirez GI , Rivera VA , Mina Possu N-J , Restrepo BN , Zinszer K , 2021. Assessing the reporting of Dengue, Chikungunya and Zika to the National Surveillance System in Colombia from 2014–2017: a capture–recapture analysis accounting for misclassification of arboviral diagnostics. PLoS Negl Trop Dis 15: 116.

    • Search Google Scholar
    • Export Citation
  • 24.

    Dirección Seccional de Salud y Protección Social de Antioquia , 2012. Enfermedades Transmitidas por Vectores. Gobernacion de Antioquia, Antioquia, Colombia.

  • 25.

    Departamento Administrativo Nacional de Estadística , 2019. Resultados Censo Nacional de Población y Vivienda 2018. Popayán, Cauca. Available at: https://www.dane.gov.co. Accessed November 4, 2022.

  • 26.

    Hontz RD et al., 2015. Itaya virus, a novel Orthobunyavirus associated with human febrile illness, Peru. Emerg Infect Dis 21: 781788.

  • 27.

    Santiago FW , Halsey ES , Siles C , Vilcarromero S , Guevara C , Silvas JA , Ramal C , Ampuero JS , Aguilar PV , 2015. Long-term arthralgia after Mayaro virus infection correlates with sustained pro-inflammatory cytokine response. PLoS Negl Trop Dis 9: 114.

    • Search Google Scholar
    • Export Citation
  • 28.

    Aguilar PV et al., 2007. Endemic eastern equine encephalitis in the Amazon region of Peru. Am J Trop Med Hyg 76: 293298.

  • 29.

    Instituto Nacional de Salud , 2019. Informe de Evento Dengue, Colombia, 2019. Available at: https://www.ins.gov.co/buscador-eventos/Informesdeevento/DENGUE_2019.pdf. Accessed November 4, 2022.

  • 30.

    Gutierrez-Barbosa H , Medina-Moreno S , Zapata JC , Chua JV , 2020. Dengue infections in Colombia: epidemiological trends of a hyperendemic country. Trop Med Infect Dis 5: 114.

    • Search Google Scholar
    • Export Citation
  • 31.

    Morrison AC et al., 2008. Venezuelan equine encephalitis virus in Iquitos, Peru: urban transmission of a sylvatic strain. PLoS Negl Trop Dis 2: 114.

    • Search Google Scholar
    • Export Citation
  • 32.

    Aguilar PV et al., 2010. Guaroa virus infection among humans in Bolivia and Peru. Am J Trop Med Hyg 83: 714721.

  • 33.

    Instituto Nacional de Salud , 2015. Chikungunya en Colombia, Año 2014: Informe Quincenal Epidemiologico Nacional 20. Available at: https://www.ins.gov.co/buscador-eventos/IQEN/IQEN%20vol%2020%202015%20num%205.pdf. Accessed November 4, 2022.

  • 34.

    Instituto Nacional de Salud , 2016. Boletin Epidemiologico Semanal: Semana Epidemiológica Número 52 de 2016. Instituto Nacional de Salud Dirección de Vigilancia y Análisis del Riesgo en Salud Pública. Available at: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2016%20Bolet%C3%ADn%20epidemiol%C3%B3gico%20semana%2052%20-.pdf. Accessed November 4, 2022.

  • 35.

    Groot H , Morales A , Vidales H , 1961. Virus isolations from forest mosquitoes in San Vicente de Chucuri, Colombia. Am J Trop Med Hyg 10: 397402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Groot H , Kerr JA , Sanmartin C , Vidales H , 1959. Antibodies to yellow fever and other arthropod-borne viruses in human residents of San Vicente de Chucuri, Santander, Colombia. Am J Trop Med Hyg 8: 175189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Roberto S , Ricardo S , Hidalgo M , Vesga JF , Castañeda E , Niño N , Valbuena G , Orejuela L , 2008. Las Rickettsias como Agentes Etiológicas de Entidades Febriles no Diagnosticadas en Colombia. Ediciones Uniandes, Bogota, Colombia.

    • Search Google Scholar
    • Export Citation
  • 38.

    Martins KA et al., 2019. Neutralizing antibodies from convalescent Chikungunya virus patients can cross-neutralize Mayaro and Una viruses. Am J Trop Med Hyg 100: 15411544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Bopp NE , Jencks KJ , Siles C , Guevara C , Vilcarromero S , Fernández D , Halsey ES , Ampuero JS , Aguilar PV , 2021. Serological responses in patients infected with Mayaro virus and evaluation of cross-protective responses against Chikungunya virus. Am J Trop Med Hyg 106: 607609.

    • Search Google Scholar
    • Export Citation
  • 40.

    Fischer C et al., 2020. Robustness of serologic investigations for Chikungunya and Mayaro viruses following coemergence. MSphere 5: 17.

  • 41.

    Gómez-Camargo DE , Egurrola-Pedraza JA , Cruz CD , Popuche D , Ochoa-Díaz MM , Guevara C , Silva M , Abente EJ , Ampuero JS , 2021. Evidence of Oropouche Orthobunyavirus infection, Colombia, 2017. Emerg Infect Dis 27: 17561758.

    • Crossref
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 3573 3573 194
Full Text Views 47 47 6
PDF Downloads 66 66 8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Arbovirus Antibody Seroprevalence in the Human Population from Cauca, Colombia

Juliana Gil-MoraPontificia Universidad Javeriana, Bogota, Colombia;

Search for other papers by Juliana Gil-Mora in
Current site
Google Scholar
PubMed
Close
,
L. Yoana Acevedo-GutiérrezDepartment of Pathology, University of Texas Medical Branch, Galveston, Texas;

Search for other papers by L. Yoana Acevedo-Gutiérrez in
Current site
Google Scholar
PubMed
Close
,
Paola L. Betancourt-RuizPontificia Universidad Javeriana, Bogota, Colombia;

Search for other papers by Paola L. Betancourt-Ruiz in
Current site
Google Scholar
PubMed
Close
,
Heidy C. Martínez-DiazPontificia Universidad Javeriana, Bogota, Colombia;

Search for other papers by Heidy C. Martínez-Diaz in
Current site
Google Scholar
PubMed
Close
,
Diana FernándezDepartment of Pathology, University of Texas Medical Branch, Galveston, Texas;

Search for other papers by Diana Fernández in
Current site
Google Scholar
PubMed
Close
,
Nathen E. BoppDepartment of Pathology, University of Texas Medical Branch, Galveston, Texas;

Search for other papers by Nathen E. Bopp in
Current site
Google Scholar
PubMed
Close
,
Luz A. Olaya-MásmelaUniversidad Libre, Cali, Colombia;

Search for other papers by Luz A. Olaya-Másmela in
Current site
Google Scholar
PubMed
Close
,
Eliana BolañosSecretaria de Salud Departamental, Popayán, Colombia;

Search for other papers by Eliana Bolaños in
Current site
Google Scholar
PubMed
Close
,
Efraín BenavidesUniversidad de la Salle, Bogota, Colombia;

Search for other papers by Efraín Benavides in
Current site
Google Scholar
PubMed
Close
,
Alejandro Villasante-TezanosDepartment of Biostatistics and Data Science, University of Texas Medical Branch;

Search for other papers by Alejandro Villasante-Tezanos in
Current site
Google Scholar
PubMed
Close
,
Marylin HidalgoPontificia Universidad Javeriana, Bogota, Colombia;

Search for other papers by Marylin Hidalgo in
Current site
Google Scholar
PubMed
Close
, and
Patricia V. AguilarDepartment of Pathology, University of Texas Medical Branch, Galveston, Texas;
Center for Tropical Diseases, Galveston, Texas

Search for other papers by Patricia V. Aguilar in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT.

Several arboviruses have emerged or reemerged into the New World during the past several decades, causing outbreaks of significant proportion. In particular, the outbreaks of Dengue virus (DENV), Zika virus, and Chikungunya virus (CHIKV) have been explosive and unpredictable, and have led to significant adverse health effects. These viruses are considered the leading cause of acute undifferentiated febrile illnesses in Colombia. However, Venezuelan equine encephalitis virus (VEEV) is endemic in Colombia, and arboviruses such as the Mayaro virus (MAYV) and the Oropouche virus (OROV) cause febrile illnesses in neighboring countries. Yet, evidence of human exposure to MAYV and OROV in Colombia is scarce. In this study, we conducted a serosurvey study in healthy individuals from the Cauca Department in Colombia. We assessed the seroprevalence of antibodies against multiple arboviruses, including DENV serotype 2, CHIKV, VEEV, MAYV, and OROV. Based on serological analyses, we found that the overall seroprevalence for DENV serotype 2 was 30%, 1% for MAYV, 2.6% for CHIKV, 4.4% for VEEV, and 2% for OROV. This study provides evidence about the circulation of MAYV and OROV in Colombia, and suggests that they—along with VEEV and CHIKV—might be responsible for cases of acute undifferentiated febrile illnesses that remain undiagnosed in the region. The study results also highlight the need to strengthen surveillance programs to identify outbreaks caused by these and other vector-borne pathogens.

Author Notes

Address correspondence to Marylin Hidalgo, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra 7a No 43-82, Bogotá, Colombia. E-mail: hidalgo.m@javeriana.edu.co or Patricia V. Aguilar, Department of Pathology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, E-mail: pvaguila@utmb.edu

Financial support: This research was supported by COLCIENCIAS (code 120374455209) and by the Fogarty International Center and the National Institute of Allergy and Infectious Diseases, NIH (award no. D43 TW010331). J. G. was supported by a Young Investigator Award provided by COLCIENCIAS.

Disclosure: This cross-sectional study was approved by the institutional review board from the Pontificia Universidad Javeriana. The procedures performed in the enrolled participants included a general survey containing demographics, clinical, and personal information followed by venipuncture to acquire a blood sample at only one point in the study. These procedures were considered minimal risk by the review board.

Disclaimer: The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Authors’ addresses: Juliana Gil-Mora, Paola L. Betancourt-Ruiz, Heidy C. Martínez-Diaz, and Marylin Hidalgo, Pontificia Universidad Javeriana, Bogota, Colombia, E-mails: juliana.gil@javeriana.edu.co, betancourtp@javeriana.edu.co, h-martinez@javeriana.edu.co, and hidalgo.m@javeriana.edu.co. L. Yoana Acevedo-Gutiérrez, Diana Fernández, and Nathen E. Bopp, Department of Pathology, University of Texas Medical Branch, Galveston, TX, E-mails: leidy.acevedo@udea.edu.co, dpfernan@utmb.edu, and nebopp@utmb.edu. Luz A. Olaya-Másmela, Universidad Libre, Cali, Colombia, E-mail: adrianaolaya26@gmail.com. Eliana Bolaños, Secretaria de Salud Departamental, Popayán, Colombia, E-mail: eliana.bolanos@cauca.gov.co. Efraín Benavides, Universidad de la Salle, Bogota, Colombia, E-mail: efbenavides@unisalle.edu.co. Alejandro Villasante-Tezanos, Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston, TX, E-mail: alvillas@utmb.edu. Patricia V. Aguilar, Department of Pathology, University of Texas Medical Branch, Galveston, TX, and Center for Tropical Diseases, Galveston, TX, E-mail: pvaguila@utmb.edu.

Save