Repeated Rapid Active Sampling Surveys Demonstrated a Rapidly Changing Zika Seroprevalence among Children in a Rural Dengue-endemic Region in Southwest Guatemala during the Zika Epidemic (2015–2016)

Molly M. Lamb Department of Epidemiology and Center for Global Health, Colorado School of Public Health, Aurora, Colorado;

Search for other papers by Molly M. Lamb in
Current site
Google Scholar
PubMed
Close
,
Alejandra Paniagua-Avila Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York;
Center for Human Development, Fundacion para la Salud Integral de los Guatemaltecos, FUNSALUD, Coatepeque, Quetzaltenango, Guatemala;

Search for other papers by Alejandra Paniagua-Avila in
Current site
Google Scholar
PubMed
Close
,
Alma Zacarias Center for Human Development, Fundacion para la Salud Integral de los Guatemaltecos, FUNSALUD, Coatepeque, Quetzaltenango, Guatemala;

Search for other papers by Alma Zacarias in
Current site
Google Scholar
PubMed
Close
,
Neudy Rojop Center for Human Development, Fundacion para la Salud Integral de los Guatemaltecos, FUNSALUD, Coatepeque, Quetzaltenango, Guatemala;

Search for other papers by Neudy Rojop in
Current site
Google Scholar
PubMed
Close
,
Andrea Chacon Center for Human Development, Fundacion para la Salud Integral de los Guatemaltecos, FUNSALUD, Coatepeque, Quetzaltenango, Guatemala;

Search for other papers by Andrea Chacon in
Current site
Google Scholar
PubMed
Close
,
Muktha S. Natrajan Emory University Department of Medicine, Division of Infectious Diseases, Atlanta, Georgia;

Search for other papers by Muktha S. Natrajan in
Current site
Google Scholar
PubMed
Close
,
Jesse J. Waggoner Emory University Department of Medicine, Division of Infectious Diseases, Atlanta, Georgia;

Search for other papers by Jesse J. Waggoner in
Current site
Google Scholar
PubMed
Close
,
Maria Renee Lopez Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala;

Search for other papers by Maria Renee Lopez in
Current site
Google Scholar
PubMed
Close
,
Celia Cordon-Rosales Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala;

Search for other papers by Celia Cordon-Rosales in
Current site
Google Scholar
PubMed
Close
,
James W. Huleatt Sanofi, Swiftwater, Pennsylvania;

Search for other papers by James W. Huleatt in
Current site
Google Scholar
PubMed
Close
,
Matthew I. Bonaparte Sanofi, Swiftwater, Pennsylvania;

Search for other papers by Matthew I. Bonaparte in
Current site
Google Scholar
PubMed
Close
,
Edwin J. Asturias Department of Epidemiology and Center for Global Health, Colorado School of Public Health, Aurora, Colorado;
Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado

Search for other papers by Edwin J. Asturias in
Current site
Google Scholar
PubMed
Close
, and
Daniel Olson Department of Epidemiology and Center for Global Health, Colorado School of Public Health, Aurora, Colorado;
Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado

Search for other papers by Daniel Olson in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT.

Although Central America is largely dengue virus (DENV)-endemic, the 2015–2016 Zika virus (ZIKV) pandemic brought new urgency to develop surveillance approaches capable of characterizing the rapidly changing disease burden in resource-limited settings. We conducted a pediatric DENV surveillance study in rural Guatemala, including serial cross-sectional surveys from April through September 2015 (Survey 1), in October–November 2015 (Survey 2), and January–February 2016 (Survey 3). Serum underwent DENV IgM MAC ELISA and polymerase chain reaction testing. Using banked specimens from Surveys 2 and 3, we expanded testing to include DENV 1–4 and ZIKV microneutralization (MN50), DENV NS1 IgG ELISA, and ZIKV anti-NS1 antibody Blockage of Binding (BoB) ELISA testing. Demographic risk factors for ZIKV BoB positivity were explored using multivariable generalized linear regression models. Of Survey 2 and 3 samples available (N = 382), DENV seroprevalence slightly increased (+1%–10% depending on the assay) during the surveillance period and increased with age. In contrast, ZIKV seroprevalence consistently increased over the 3-month period, including from 6% to 34% (P < 0.0001) and 10%–37% (P < 0.0001) using the MN50 ≥100 and BoB ELISA assays, respectively. Independent risk factors for ZIKV seropositivity included older age (prevalence ratio (PR)/year = 1.12, 95% confidence interval (CI) = 1.07–1.17) and primary caregiver literacy (PR = 2.80, CI = 1.30–6.06). Rapid active surveillance (RAS) surveys demonstrated a nearly 30% increase in ZIKV prevalence and a slight (≤ 10%) increase in DENV seroprevalence from October to November 2015 to January to February 2016 in rural southwest Guatemala, regardless of serologic assay used. RAS surveys may be a useful “off-the-shelf” tool to characterize arboviruses and other emerging pathogens rapidly in resource-limited settings.

    • Supplemental Materials (PDF 871 KB)

Author Notes

Address correspondence to Daniel Olson, Department of Pediatrics, Center for Global Health, University of Colorado School of Medicine, 13199 E. Montview Blvd, Suite 310, Aurora, CO 80045. E-mail: Daniel.Olson@cuanschutz.edu

Funding information: This study was supported by an Investigator-Initiated Sponsored Research Grant from Takeda Pharmaceuticals (IISR-2014-100647) and a Material Transfer Agreement with Sanofi. D. O. is supported by NIH/National Center for Advancing Translational Sciences Colorado CTSI (Clinical and Translational Sciences Institute) grant no. UL1 TR001082 and National Institute of Allergy and Infectious Diseases grant no. 1K23AI143967-01. Contents are the authors’ sole responsibility and do not necessarily represent official NIH view.

Disclosure: Dr. Lamb is partially supported by grants from Roche, Pfizer, and Biofire. Dr. Asturias has research support from Pfizer and serves on the data safety monitoring boards of Curevax and Inovio. Dr. Olson is partially supported by grants from Roche and Pfizer. James Huleatt and Matthew Bonaparte are Sanofi employees and may or may not hold company stocks.

Authors’ addresses: Molly M. Lamb, Department of Epidemiology and Center for Global Health, Colorado School of Public Health, Aurora, CO, E-mail: Molly.Lamb@cuanschutz.edu. Alejandra Paniagua-Avila, Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, and Center for Human Development, Fundacion para la Salud Integral de los Guatemaltecos, FUNSALUD, Coatepeque, Quetzaltenango, Guatemala, E-mail: malejandrapaniagua@gmail.com. Alma Zacarias, Neudy Rojop, and Andrea Chacon, Fundacion para la Salud Integral de los Guatemaltecos, FUNSALUD, Coatepeque, Quetzaltenango, Guatemala, E-mails: almaloarca@yahoo.es, neudy.rojop.fsigcu@gmail.com, and chaconjuarez@gmail.com. Muktha S. Natrajan and Jesse J. Waggoner, Emory University Department of Medicine, Division of Infectious Diseases, Atlanta, GA, E-mails: qdz9@cdc.gov and jesse.waggoner@emoryhealthcare.org. Maria Renee Lopez and Celia Cordon-Rosales, Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala, E-mails: mlopez@ces.uvg.edu.gt and ccordon@ces.uvg.edu.gt. James W. Huleatt and Matthew I. Bonaparte, Sanofi, Swiftwater, Pennsylvania, E-mails: James.Huleatt@sanofi.com and Matthew.Bonaparte@sanofi.com. Edwin J. Asturias and Daniel Olson, Department of Epidemiology and Center for Global Health, Colorado School of Public Health, Aurora, CO, and Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO E-mails: Edwin.Asturias@childrenscolorado.org and Daniel.Olson@childrenscolorado.org.

  • 1.

    Bhatt S et al., 2013. The global distribution and burden of dengue. Nature 496: 504507.

  • 2.

    World Health Organization , 2009. Dengue: guidelines for diagnosis, treatment, prevention and control. Geneva, Switzerland: WHO.

  • 3.

    Cattarino L , Rodriguez-Barraquer I , Imai N , Cummings DAT , Ferguson NM , 2020. Mapping global variation in dengue transmission intensity. Sci Transl Med 12: eaaax4144.

    • Search Google Scholar
    • Export Citation
  • 4.

    Moore CA et al., 2017. Characterizing the pattern of anomalies in congenital zika syndrome for pediatric clinicians. JAMA Pediatr 171: 288295.

  • 5.

    Baud D , Gubler DJ , Schaub B , Lanteri MC , Musso D , 2017. An update on Zika virus infection. Lancet 390: 20992109.

  • 6.

    Espinal MA , Andrus JK , Jauregui B , Waterman SH , Morens DM , Santos JI , Horstick O , Francis LA , Olson D , 2019. Emerging and reemerging Aedes-transmitted arbovirus infections in the region of the Americas: implications for health policy. Am J Public Health 109: 387392.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Theze J et al., 2018. Genomic epidemiology reconstructs the introduction and spread of Zika virus in Central America and Mexico. Cell Host Microbe 23: 855864 e7.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Pielnaa P , Al-Saadawe M , Saro A , Dama MF , Zhou M , Huang Y , Huang J , Xia Z , 2020. Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development. Virology 543: 3442.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Castillo Signor LDC , Edwards T , Escobar LE , Mencos Y , Matope A , Castaneda-Guzman M , Adams ER , Cuevas LE , 2020. Epidemiology of dengue fever in Guatemala. PLoS Negl Trop Dis 14: e0008535.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Strategic Advisory Group of Experts on Immunization , 2018. Revised SAGE Recommendation on Use of Dengue vaccine Is Issued. Available at: https://www.infectioncontroltoday.com/view/revised-sage-recommendation-use-dengue-vaccine-issued.

  • 11.

    Ferraris P , Yssel H , Missé D , 2019. Zika virus infection: an update. Microbes Infect 21: 353360.

  • 12.

    Pan YH et al., 2021. Use of seroprevalence to guide dengue vaccination plans for older adults in a dengue non-endemic country. PLoS Negl Trop Dis 15: e0009312.

    • Search Google Scholar
    • Export Citation
  • 13.

    Imai N , Ferguson NM , 2018. Targeting vaccinations for the licensed dengue vaccine: Considerations for serosurvey design. PLoS One 13: e0199450.

  • 14.

    Fritzell C , Rousset D , Adde A , Kazanji M , Van Kerkhove MD , Flamand C , 2018. Current challenges and implications for dengue, chikungunya and Zika seroprevalence studies worldwide: a scoping review. PLoS Negl Trop Dis 12: e0006533.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Nealon J , Bouckenooghe A , Cortes M , Coudeville L , Frago C , Macina D , Tam CC , 2022. Dengue endemicity, force of infection, and variation in transmission intensity in 13 endemic countries. J Infect Dis 225: 7583.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Asturias EJ et al., 2016. The Center for Human Development in Guatemala: an innovative model for global population health. Adv Pediatr 63: 357387.

    • Search Google Scholar
    • Export Citation
  • 17.

    Departamento de Epidemiología, Ministerio de Salud Pública y Asistencia Social INdE, Secretaría de Planificación y Programación de la Presidencia , 2021. Situación Epidemiológica de las Arbovirosis en Guatemala. Available at: http://epidemiologia.mspas.gob.gt/files/2021/salas-situacionales/arbovirosis/ARB-SE-13-2021.pdf. Accessed May 12, 2022.

  • 18.

    Singh J , Jain DC , Sharma RS , Verghese T , 1996. Evaluation of immunization coverage by lot quality assurance sampling compared with 30-cluster sampling in a primary health centre in India. Bull World Health Organ 74: 269274.

    • Search Google Scholar
    • Export Citation
  • 19.

    D’Ardenne KK , Darrow J , Furniss A , Chavez C , Hernandez H , Berman S , Asturias EJ , 2016. Use of rapid needs assessment as a tool to identify vaccination delays in Guatemala and Peru. Vaccine 34: 17191725.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lanata CF , Black RE , 1991. Lot quality assurance sampling techniques in health surveys in developing countries: advantages and current constraints. World Health Stat Q 44: 133139.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Malilay J , Flanders WD , Brogan D , 1996. A modified cluster-sampling method for post-disaster rapid assessment of needs. Bull World Health Organ 74: 399405.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    World Health Organization , 2005. Immunization Coverage Cluster Survey Reference Manual. Geneva, Switzerland: WHO.

  • 23.

    Henderson RH , Sundaresan T , 1982. Cluster sampling to assess immunization coverage: a review of experience with a simplified sampling method. Bull World Health Organ 60: 253260.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Olson D et al., 2017. Performance of a mobile phone app-based participatory syndromic surveillance system for acute febrile illness and acute gastroenteritis in rural Guatemala. J Med Internet Res 19: e368.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Olson D , Lamb MM , Lopez MR , Paniagua-Avila MA , Zacarias A , Samayoa-Reyes G , Cordon-Rosales C , Asturias EJ , 2017. A rapid epidemiological tool to measure the burden of norovirus infection and disease in resource-limited settings. Open Forum Infect Dis 4: ofx049.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Johnson BW , Russell BJ , Lanciotti RS , 2005. Serotype-specific detection of dengue viruses in a fourplex real-time reverse transcriptase PCR assay. J Clin Microbiol 43: 49774983.

    • Search Google Scholar
    • Export Citation
  • 27.

    Namekar M , Ellis EM , O’Connell M , Elm J , Gurary A , Park SY , Imrie A , Nerurkar VR , 2013. Evaluation of a new commercially available immunoglobulin M capture enzyme-linked immunosorbent assay for diagnosis of dengue virus infection. J Clin Microbiol 51: 31023106.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Nascimento EJM , Bonaparte MI , Luo P , Vincent TS , Hu B , George JK , Anez G , Noriega F , Zheng L , Huleatt JW , 2019. Use of a Blockade-of-Binding ELISA and microneutralization assay to evaluate Zika virus serostatus in Dengue-endemic areas. Am J Trop Med Hyg 101: 708715.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Montoya M et al., 2018. Longitudinal analysis of antibody cross-neutralization following Zika virus and Dengue virus infection in Asia and the Americas. J Infect Dis 218: 536545.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Netto EM et al., 2017. High Zika virus seroprevalence in Salvador, northeastern Brazil limits the potential for further outbreaks. MBio 8: https://doi.org/10.1128/mBio.01390-17.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Saba Villarroel PM et al., 2018. Zika virus epidemiology in Bolivia: a seroprevalence study in volunteer blood donors. PLoS Negl Trop Dis 12: e0006239.

  • 32.

    Zambrana JV et al., 2018. Seroprevalence, risk factor, and spatial analyses of Zika virus infection after the 2016 epidemic in Managua, Nicaragua. Proc Natl Acad Sci USA 115: 92949299.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Diaz-Quinonez JA , Lopez-Martinez I , Torres-Longoria B , Vazquez-Pichardo M , Cruz-Ramirez E , Ramirez-Gonzalez JE , Ruiz-Matus C , Kuri-Morales P , 2016. Evidence of the presence of the Zika virus in Mexico since early 2015. Virus Genes 52: 855857.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Guerbois M et al., 2016. Outbreak of Zika virus infection, Chiapas State, Mexico, 2015, and first confirmed transmission by Aedes aegypti mosquitoes in the Americas. J Infect Dis 214: 13491356.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Bosch I et al., 2017. Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum. Sci Transl Med 9: eaan1589.

  • 36.

    Faria NR et al., 2016. Zika virus in the Americas: early epidemiological and genetic findings. Science 352: 345349.

  • 37.

    Grubaugh ND et al., 2017. Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 546: 401405.

  • 38.

    Metsky HC et al., 2017. Zika virus evolution and spread in the Americas. Nature 546: 411415.

  • 39.

    Stettler K et al., 2016. Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 353: 823826.

  • 40.

    Velasco-Salas ZI , Sierra GM , Guzman DM , Zambrano J , Vivas D , Comach G , Wilschut JC , Tami A , 2014. Dengue seroprevalence and risk factors for past and recent viral transmission in Venezuela: a comprehensive community-based study. Am J Trop Med Hyg 91: 10391048.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Pavia-Ruz N et al., 2018. Dengue seroprevalence in a cohort of schoolchildren and their siblings in Yucatan, Mexico (2015–2016). PLoS Negl Trop Dis 12: e0006748.

    • Search Google Scholar
    • Export Citation
  • 42.

    Cheong WH , 1967. Preferred Aedes aegypti larval habitats in urban areas. Bull World Health Organ 36: 586589.

  • 43.

    Centers for Disease Control and Prevention , 2020. Community Assessment for Public Health Emergency Response (CASPER). Available at: https://www.cdc.gov/nceh/casper/sampling-methodology.htm. Accessed June 9, 2020.

  • 44.

    Schnall A , Nakata N , Talbert T , Bayleyegn T , Martinez D , Wolkin A , 2017. Community Assessment for Public Health Emergency Response (CASPER): an innovative emergency management tool in the United States. Am J Public Health 107: S186S192.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Martinez Viedma MDP et al., 2021. Evaluation of ELISA-Based Multiplex Peptides for the Detection of Human Serum Antibodies Induced by Zika Virus Infection across Various Countries. Viruses 13: 1319.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Bonaparte M , Zheng L , Garg S , Guy B , Lustig Y , Schwartz E , DiazGranados CA , Savarino S , Ataman-Onal Y , 2019. Evaluation of rapid diagnostic tests and conventional enzyme-linked immunosorbent assays to determine prior dengue infection. J Travel Med 26: taz078.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 2869 2279 36
Full Text Views 164 144 4
PDF Downloads 149 127 4
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save