• 1.

    WHO , 2021. World Malaria Report 2021. Geneva, Switzerland: World Health Organization. Available at: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021. Accessed December 30, 2021.

    • PubMed
    • Export Citation
  • 2.

    Subbarao SK , Nanda N , Rahi M , Raghavendra K , 2019. Biology and bionomics of malaria vectors in India: existing information and what more needs to be known for strategizing elimination of malaria. Malar J 18: 396.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Sinka ME et al., 2012. A global map of dominant malaria vectors. Parasit Vectors 5: 69.

  • 4.

    Tananchai C , Manguin S , Bangs MJ , Chareonviriyaphap T , 2019. Malaria vectors and species complexes in Thailand: implications for vector control. Trends Parasitol 35: 544558.

    • Search Google Scholar
    • Export Citation
  • 5.

    Subbarao SK , 1998. Anopheline Species Complexes in South-East Asia Region. WHO Technical Publication SEARO 18.

  • 6.

    WHO, World Health Organization , 1975. Manual on Practical Entomology in Malaria. Part-I: Vector Bionomics and Organisation of Anti Malaria Activities. Geneva, Switzerland: World Health Organization.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Korgaonkar NS , Kumar A , Yadav RS , Kabadi D , Dash AP , 2012. Mosquito biting activity on humans & detection of Plasmodium falciparum infection in Anopheles stephensi in Goa, India. Indian J Med Res 135: 120126.

    • Search Google Scholar
    • Export Citation
  • 8.

    National Vector Borne Disease Control Programme , 2015. Manual on Integrated Vector Management, India. Directorate G.H.S., Ministry of Health and Family Welfare, Government of India. Available at: https://nvbdcp.gov.in/WriteReadData/l892s/IVM-Manual-Draft-2015.pdf. Accessed May 17, 2021.

    • PubMed
    • Export Citation
  • 9.

    Moiroux N et al., 2012. Changes in Anopheles funestus biting behaviour following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis 206: 16221629.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kreppel KS et al., 2020. Emergence of behavioural avoidance strategies of malaria vectors in areas of high LLIN coverage in Tanzania. Sci Rep 10: 14527.

  • 11.

    Rath A , Prusty MR , Das M , Mahapatra N , Tripathy H , Hazra RK , 2015. A shift in resting habitat and feeding behavior of Anopheles fluviatilis sibling species in the Keonjhar district of Odisha, India. Trans R Soc Trop Med Hyg 109: 730737.

    • Search Google Scholar
    • Export Citation
  • 12.

    Sarkar S , Gangare V , Singh P , Dhiman RC , 2019. Shift in potential malaria transmission areas in India, using the Fuzzy-Based Climate Suitability Malaria Transmission (FCSMT) model under changing climatic conditions. Int J Environ Res Public Health 16: 3474.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Chaturvedi R , Deora N , Bhandari D , Parvez S , Sinha A , Sharma A , 2021. Trends of neglected Plasmodium species infection in humans over the past century in India. One Health 11: 100190.

    • Search Google Scholar
    • Export Citation
  • 14.

    Quantum GIS Development Team , 2021. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. Available at: https://qgis.org/en/site/.

  • 15.

    Dev V , Sharma VP , 2013. The dominant mosquito vectors of human malaria in India. Manguin S , ed. Anopheles Mosquitoes: New Insights into Malaria Vectors. Rijeka, Croatia: InTechOpen, 239271.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Prakash A , Bhattacharyya DR , Mohapatra PK , Mahanta J , 2005. Malaria transmission risk by the mosquito Anopheles baimaii (formerly known as An. dirus species D) at different hours of the night in North-east India. Med Vet Entomol 19: 423427.

    • Search Google Scholar
    • Export Citation
  • 17.

    Prakash A , Bhattacharyya DR , Mohapatra PK , Mahanta J , 2001. Estimation of vectorial capacity of Anopheles dirus (Diptera: Culicidae) in a forest-fringed village of Assam (India). Vector Borne Zoonotic Dis 1: 231237.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Dev V , Adak T , Singh OP , Nanda N , Baidya BK , 2015. Malaria transmission in Tripura: disease distribution & determinants. Indian J Med Res 142: S12S22.

    • Search Google Scholar
    • Export Citation
  • 19.

    Sarmah NP et al., 2019. Role of Anopheles baimaii: potential vector of epidemic outbreak in Tripura, north-east India. J Glob Health Rep 3: e2019036.

    • Search Google Scholar
    • Export Citation
  • 20.

    Prakash A , Bhattacharyya DR , Mohapatra PK , Barua U , Phukan A , Mahanta J , 2003. Malaria control in a forest camp in an oil exploration area of Upper Assam. Natl Med J India 16: 135138.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Akhtar N , Nagpal BN , Kapoor N , Srivastava A , Valecha N , 2016. Role of An. culicifacies as a vector of malaria in changing ecological scenario of northeastern states of India. J Vector Borne Dis 53: 264271.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Dutta P , Khan SA , Bhattarcharyya DR , Khan AM , Sharma CK , Mahanta J , 2010. Studies on the breeding habitats of the vector mosquito Anopheles baimai and its relationship to malaria incidence in northeastern region of India. EcoHealth 7: 498506.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Carnevale P , Manguin S , 2021. Review of issues on residual malaria transmission. J Infect Dis 223 (Suppl 2):S61S80.

  • 24.

    Baruah I , Das NG , Das SC , 2004. Studies on anopheline fauna and malaria incidence in Dhansiripar PHC of Dimapur, Nagaland. J Vector Borne Dis 41: 6771.

    • Search Google Scholar
    • Export Citation
  • 25.

    Dev V , Sangma BM , Dash AP , 2010. Persistent transmission of malaria in Garo hills of Meghalaya bordering Bangladesh, north-east India. Malar J 9: 263.

    • Search Google Scholar
    • Export Citation
  • 26.

    Jambulingam P , Sahu SS , Manonmoni A , 2005. Reappearance of Anopheles minimus in Singhbhum hills at east-central India. Acta Trop 96: 3135.

  • 27.

    Baruah K , Lal S , 2004. A report on the susceptibility status of Anopheles minimus (Theobald) against DDT and deltamethrin in three districts of Assam. J Vector Borne Dis 41: 4244.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Dhiman S , Gowswami D , Rabha B , Gopalakrishnan R , Baruah I , Singh L , 2010. Malaria epidemiology along Indo-Bangladesh border in Tripura state, India. Southeast Asian J Trop Med Public Health 41: 12791289.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Das NG , Bhuyan M , Das SC , 2000. Entomological and epidemiological studies on malaria in Rajmahal range, Bihar. Indian J Malariol 37: 8896.

  • 30.

    Dev V , Ansari MA , Hira CR , Barman K , 2001. An outbreak of Plasmodium falciparum malaria due to Anopheles minimus in central Assam, India. Indian J Malariol 38: 3238.

    • Search Google Scholar
    • Export Citation
  • 31.

    Sahu SS , Gunasekaran K , Jambulingam P , 2009. Bionomics of Anopheles minimus and An. fluviatilis (Diptera: Culicidae) in east-central India, endemic for falciparum malaria: human landing rates, host feeding, and parity. J Med Entomol 46: 10451051.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Dhiman S , Bhola RK , Goswami D , Rabha B , Kumar D , Baruah I , Singh L , 2012. Polymerase chain reaction detection of human host preference and Plasmodium parasite infections in field collected potential malaria vectors. Pathog Glob Health 106: 177180.

    • Search Google Scholar
    • Export Citation
  • 33.

    Gunasekaran K , Sahu SS , Jambulingam P , 2014. Estimation of vectorial capacity of Anopheles minimus Theobald & An. fluviatilis James (Diptera: Culicidae) in a malaria endemic area of Odisha State, India. Indian J Med Res 140: 653659.

    • Search Google Scholar
    • Export Citation
  • 34.

    Mohanty PK , Dash S , Nayak S , 2017. Bionomics and diversity pattern of malaria mosquito Anopheles minimus in Keonjhar district of Odisha. Indian Journal of Biology 4: 118125.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Sahu SS , Gunasekaran K , Vanamail P , Jambulingam P , 2011. Seasonal prevalence & resting behaviour of Anopheles minimus Theobald & An. fluviatilis James (Diptera: Culicidae) in east-central India. Indian J Med Res 133: 655661.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Dev V , Phookan S , Sharma VP , Anand SP , 2004. Physiographic and entomologic risk factors of malaria in Assam, India. Am J Trop Med Hyg 71: 451456.

  • 37.

    Saxena R , Nagpal BN , Singh VP , Srivastava A , Dev V , Sharma MC , Gupta HP , Tomar AS , Sharma S , Gupta SK , 2014. Impact of deforestation on known malaria vectors in Sonitpur district of Assam, India. J Vector Borne Dis 51: 211215.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Yadav K , Dhiman S , Rabha B , Goswami D , Saikia PK , Veer V , 2017. Disappearance of Anopheles minimus and Anopheles dirus from certain malaria endemic areas of Assam, India. J Arthropod Borne Dis 11: 2735.

    • Search Google Scholar
    • Export Citation
  • 39.

    Dutta P , Khan AM , Khan SA , Biswas D , Hazarika NC , Mahanta J , 2002. Anthropo-ecosystem and Change of environment compounding malaria out break in north Lakhimpur District, Assam, bordering Arunachal Pradesh. J Hum Ecol 13: 345349.

    • Search Google Scholar
    • Export Citation
  • 40.

    Khan ZA , Sunish IP , 2017. A Note on the Insecticide Susceptibility Status of Disease Vectors; Anopheles sundaicus and Aedes albopictus, in the Car Nicobar Island. Int J Res Studies in Zoology 3: 5053.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Krishnamoorthy K , Jambulingam P , Natarajan R , Shriram AN , Das PK , Sehgal SC , 2005. Altered environment and risk of malaria outbreak in South Andaman, Andaman & Nicobar Islands, India affected by tsunami disaster. Malar J 4: 32.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Vidhya PT , Sunish IP , Maile A , Zahid AK , 2019. Anopheles sundaicus Mosquitoes as Vector for Plasmodium knowlesi, Andaman and Nicobar Islands, India. Emerg Infect Dis 25: 817820.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Tyagi RK , Das MK , Singh SS , Sharma YD , 2013. Discordance in drug resistance-associated mutation patterns in marker genes of Plasmodium falciparum and Plasmodium knowlesi during coinfections. J Antimicrob Chemother 68: 10811088.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Swarnakar G , Dashora PK , 2002. Malaria vectors of southern Rajasthan, India. Indian J Malariol 39: 108112.

  • 45.

    Ghosh A , Mandal S , Chandra G , 2010. Seasonal distribution, parity, resting, host-seeking behavior and association of malarial parasites of Anopheles stephensi Liston in Kolkata, West Bengal. Entomol Res 40: 4654.

    • Search Google Scholar
    • Export Citation
  • 46.

    Nanda N , Singh SP , Prajapati BK , Ranjan K , Kar NP , Sharma SK , Valecha N , 2017. Entomological determinants of malaria transmission in an epidemic prone area of District Nuh (Haryana state), India. J Vector Borne Dis 54: 334340.

    • Search Google Scholar
    • Export Citation
  • 47.

    Batra CP , Adak T , Sharma VP , Mittal PK , 2001. Impact of urbanization on bionomics of An. culicifacies and An. stephensi in Delhi. Indian J Malariol 38: 6175.

    • Search Google Scholar
    • Export Citation
  • 48.

    Thomas S , Ravishankaran S , Justin NA , Asokan A , Mathai MT , Valecha N , Montgomery J , Thomas MB , Eapen A , 2017. Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria. Malar J 16: 111.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Adak T , Kaur S , Singh OP , 1999. Comparative susceptibility of different members of the Anopheles culicifacies complex to Plasmodium vivax. Trans R Soc Trop Med Hyg 93: 573577.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Tikar SN et al., 2011. Resistance status of the malaria vector mosquitoes, Anopheles stephensi and Anopheles subpictus towards adulticides and larvicides in arid and semi-arid areas of India. J Insect Sci 11: 85.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Raghavendra K , Velamuri PS , Verma V , Elamathi N , Barik TK , Bhatt RM , Dash AP , 2017. Temporo-spatial distribution of insecticide-resistance in Indian malaria vectors in the last quarter-century: need for regular resistance monitoring and management. J Vector Borne Dis 54: 111130.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Tiwari S , Ghosh SK , Ojha VP , Dash AP , Raghavendra K , 2010. Reduced susceptibility to selected synthetic pyrethroids in urban malaria vector Anopheles stephensi: a case study in Mangalore City, South India. Malar J 9: 179.

    • Search Google Scholar
    • Export Citation
  • 53.

    Singh RK , Kumar G , Mittal PK , 2014. Insecticide susceptibility status of malaria vectors in India: a review. Int J Mosq Res 1: 59.

  • 54.

    Gayan Dharmasiri AG et al., 2017. First record of Anopheles stephensi in Sri Lanka: a potential challenge for prevention of malaria reintroduction. Malar J 16: 326.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Sinka ME , Pironon S , Massey NC , Longbottom J , Hemingway J , Moyes CL , Willis KJ , 2020. A new malaria vector in Africa: predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proc Natl Acad Sci USA 117: 2490024908.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Manouchehri AV , Javadian E , Eshighy N , Motabar M , 1976. Ecology of Anopheles stephensi Liston in southern Iran. Trop Geogr Med 28: 228232.

  • 57.

    Basseri HR , Doosti S , Akbarzadeh K , Nateghpour M , Whitten MM , Ladoni H , 2008. Competency of Anopheles stephensi mysorensis strain for Plasmodium vivax and the role of inhibitory carbohydrates to block its sporogonic cycle. Malar J 7: 131.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Nanda N , Yadav RS , Subbarao SK , Joshi H , Sharma VP , 2000. Studies on Anopheles fluviatilis and Anopheles culicifacies sibling species in relation to malaria in forested hilly and deforested riverine ecosystems in northern Orissa, India. J Am Mosq Control Assoc 16: 199205.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Tripathy A , Samanta L , Das S , Parida SK , Marai N , Hazra RK , Kar SK , Mahapatra N , 2010. Distribution of sibling species of Anopheles culicifacies s.l. and Anopheles fluviatilis s.l. and their vectorial capacity in eight different malaria endemic districts of Orissa, India. Mem Inst Oswaldo Cruz 105: 981987.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Panda BB , Mohanty I , Rath A , Pradhan N , Hazra RK , 2019. Perennial malaria transmission and its association with rainfall at Kalahandi district of Odisha, Eastern India: a retrospective analysis. Trop Biomed 36: 610619.

    • Search Google Scholar
    • Export Citation
  • 61.

    Chand G , Chaudhary NK , Soan V , Kaushal LS , Sharma RK , Singh N , 2015. Transmission dynamics & epidemiology of malaria in two tribal districts in Madhya Pradesh, India. Indian J Med Res 141: 556566.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Sharma SK et al., 2006. Epidemiology of malaria transmission in forest and plain ecotype villages in Sundargarh District, Orissa, India. Trans R Soc Trop Med Hyg 100: 917925.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Shukla RP , Sharma SN , Kohli VK , Nanda N , Sharma VP , Subbarao SK , 2001. Dynamics of malaria transmission under changing ecological scenario in and around Nanak Matta Dam, Uttaranchal, India. Indian J Malariol 38: 9198.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Singh RK , Mittal PK , Gourshettiwar MP , Pande SJ , Dhiman RC , 2012. Susceptibility of malaria vectors to insecticides in Gadchiroli district (Maharashtra), India. J Vector Borne Dis 49: 4244.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Sougoufara S , Ottih EC , Tripet F , 2020. The need for new vector control approaches targeting outdoor biting Anopheline malaria vector communities. Parasit Vectors 13: 295.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Kumar G , Ojha VP , Pasi S , 2021. Applicability of attractive toxic sugar baits as a mosquito vector control tool in the context of India: a review. Pest Manag Sci 77: 26262634.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Singh P , Lingala MA , Sarkar S , Dhiman RC , 2017. Mapping of malaria vectors at district level in India: changing scenario and identified gaps. Vector Borne Zoonotic Dis 17: 9198.

    • Search Google Scholar
    • Export Citation
  • 68.

    Panigrahi BK , Mahapatra N , 2013. Anopheline ecology and malaria transmission during the construction of an irrigation canal in an endemic district of Odisha, India. J Vector Borne Dis 50: 248257.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Pandey S , Das MK , Singh RK , Dhiman RC , 2015. Anopheline mosquitoes in District Ramgarh (Jharkhand), India. J Vector Borne Dis 52: 232238.

  • 70.

    Tiwari S , Ghosh SK , Sathyanarayan T , Nanda N , Uragayala S , Valecha N , 2015. Malaria outbreaks in villages in North Karnataka, India and role of sibling species of Anopheles culicifacies complex. Health 7: 946954.

    • Search Google Scholar
    • Export Citation
  • 71.

    Pradhan N , Mahapatra RK , Hazra RK , 2020. A snapshot of few biological and bionomical characteristics of Anopheles culicifacies and Anopheles annularis in three malariogenically stratified districts of Odisha, India. J Egypt Soc Parasitol 50: 689697.

    • Search Google Scholar
    • Export Citation
  • 72.

    Ministry of Health & Family Welfare, Government of India , 2017. National strategic plan for malaria elimination in India 2017–2022. Available from: http://www.indiaenvironmentportal.org.in/files/file/nsp_2017-2022-updated.pdf.

    • PubMed
    • Export Citation
  • 73.

    Russell TL , Govella NJ , Azizi S , Drakeley CJ , Kachur SP , Killeen GF , 2011. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J 10: 80.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Ahmad SS, Rahi M, Saroha P, Sharma A, 2022. Ivermectin as an endectocide may boost control of malaria vectors in India and contribute to elimination. Parasit Vectors. 15(1):20.

  • 75.

    Rahi M and Sharma A, 2022. Malaria control initiatives that have the potential to be gamechangers in India’s quest for malaria elimination. The Lancet Regional Health-Southeast Asia: 100009.

    • PubMed
    • Export Citation
  • 76.

    Dhiman RC , Chavan L , Pant M , Pahwa S , 2011. National and regional impacts of climate change on malaria by 2030. Curr Sci 101: 372383.

  • 77.

    Devi P , Jauhari RK , 2004. Altitudinal distribution of mosquitoes in mountainous area of Garhwal region: Part-I. J Vector Borne Dis 41: 1726.

  • 78.

    Rani A , Gupta A , Nagpal BN , Mehta SS , 2018. Mosquito borne diseases and sanitation in Ghaziabad district, Uttar Pradesh, India. Int J Mosq Res 5: 2530.

    • Search Google Scholar
    • Export Citation
  • 79.

    Wilke ABB , Chase C , Vasquez C , Carvajal A , Medina J , Petrie WD , Beier JC , 2019. Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Sci Rep 9: 15335.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Kumar G, Sharma A and Dhiman RC, 2022. Laboratory evaluation of the efficacy of boric acid containing toxic sugar baits against Anopheles culicifacies, An. stephensi and Aedes aegypti mosquitoes. Journal of Vector Borne Diseases, 59(1): 52.

  • 81.

    Kaur C et al., 2020. Renal detection of Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi in malaria associated acute kidney injury: a retrospective case–control study. BMC Res Notes 13: 37.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 615 615 319
Full Text Views 141 141 14
PDF Downloads 66 66 15
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Challenges in Understanding the Bionomics of Indian Malaria Vectors

Gaurav KumarNational Institute of Malaria Research, New Delhi, India;

Search for other papers by Gaurav Kumar in
Current site
Google Scholar
PubMed
Close
,
Sanjeev Kumar GuptaNational Institute of Malaria Research, New Delhi, India;

Search for other papers by Sanjeev Kumar Gupta in
Current site
Google Scholar
PubMed
Close
,
Manju RahiNational Institute of Malaria Research, New Delhi, India;
Indian Council of Medical Research, New Delhi, India;

Search for other papers by Manju Rahi in
Current site
Google Scholar
PubMed
Close
, and
Amit SharmaNational Institute of Malaria Research, New Delhi, India;
Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India

Search for other papers by Amit Sharma in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT.

Many factors influence the success or failure of malaria vector control program such as political will, leadership, sustained funding, robustness of healthcare system and others. In addition, updated knowledge and information about the triad of host, parasite, and vector is of paramount importance. Vector bionomics studies that determine mosquito behavior in terms of feeding, resting, biting, mating, breeding, longevity, vectorial capacity, and response to different insecticides are a step towards enhancing our understanding. In the present work, we have compiled studies conducted in India over the past two decades (2000–2020) to identify gaps in our knowledge of malaria vector bionomics and the research that needs to be done in the future. We retrieved district-level data of India’s six primary malaria vector species. According to our findings, vector bionomics studies have been undertaken in ∼50% and ∼15% of the country’s high (annual parasite index > 1) and low (annual parasite index < 1) malaria-endemic districts respectively. Most of the research studies focused on mosquito density, insecticide susceptibility status, and parasite detection, whereas other vital bionomics parameters were neglected. Surveys conducted were incomplete, and vector bionomics data were not captured sufficiently. The absence of vector bionomics data can be a blind spot and the lack or inadequate understanding of vector bionomics can lead to use of inappropriate vector control tools. Thus, there is an urgent need to initiate comprehensive bionomics studies on India’s primary and secondary malaria vectors.

Author Notes

Address correspondence to Amit Sharma, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, New Delhi - 110077, India. E-mail: directornimr@gmail.com

These authors contributed equally to this work.

Authors’ addresses: Gaurav Kumar, Sanjeev Kumar Gupta, and Amit Sharma, ICMR-National Institute of Malaria Research, New Delhi, India, E-mails: gauravnimr@gmail.com, nimr.sanjeev@gmail.com, and directornimr@gmail.com. Manju Rahi, Indian Council of Medical Research, New Delhi, India, E-mail: drmanjurahi@gmail.com.

Save