• 1.

    Jones R et al.2020. Arbovirus vectors of epidemiological concern in the Americas: a scoping review of entomological studies on Zika, dengue and chikungunya virus vectors. PLoS One 15: e0220753.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Meltzer MI , Rigau-Pérez JG , Clark GG , Reiter P , Gubler DJ , 1998. Using disability-adjusted life years to assess the economic impact of dengue in Puerto Rico: 1984–1994. Am J Trop Med Hyg 59: 265271.

    • Search Google Scholar
    • Export Citation
  • 3.

    Silva JVJ , Lopes TRR , de Oliveira-Filho EF , Oliveira RAS , Durães-Carvalho R , Gil LHVG , 2018. Current status, challenges and perspectives in the development of vaccines against yellow fever, dengue, Zika and chikungunya viruses. Acta Trop 182: 257263.

    • Search Google Scholar
    • Export Citation
  • 4.

    Corbel V et al.2019. Second WIN international conference on “Integrated approaches and innovative tools for combating insecticide resistance in vectors of arboviruses,” October 2018, Singapore. Parasite Vector 12: 331.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Eiman M , Introini MV , Ripoll C , 2010. Guidelines for the prevention and control of Aedes aegypti. Minist Salud la Nación 1–75.

    • PubMed
    • Export Citation
  • 6.

    World Health Organization , 2009. Dengue Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. Available at: https://apps.who.int/iris/handle/10665/44188. Accessed May 5, 2022.

  • 7.

    Vaux AGC et al.2019. The challenge of invasive mosquito vectors in the U.K. during 2016–2018: a summary of the surveillance and control of Aedes albopictus. Med Vet Entomol 33: 443452.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Reiter P , 2007. Oviposition, dispersal, and survival in Aedes aegypti: implications for the efficacy of control strategies. Vector Borne Zoonotic Dis 7: 261273.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Schultes OL , Morais MHF , Cunha MDCM , Sobral A , Caiaffa WT , 2021. Spatial analysis of dengue incidence and Aedes aegypti ovitrap surveillance in Belo Horizonte, Brazil. Trop Med Int Health 26: 237255.

    • Search Google Scholar
    • Export Citation
  • 10.

    Guagliardo SA , Barboza JL , Morrison AC , Astete H , Vazquez-Prokopec G , Kitron U , 2014. Patterns of geographic expansion of Aedes aegypti in the Peruvian Amazon. PLoS Negl Trop Dis 8: e3033.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Estallo EL , Más G , Vergara-Cid C , Lanfri MA , Ludueña-Almeida F , Scavuzzo CM , Introini MV , Zaidenberg M , Almirón WR , 2013. Spatial patterns of high Aedes aegypti oviposition activity in northwestern Argentina. PLoS One 8: e54167.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Focks DA , Trosper JH , Brenner J , Chadee D , 1994. The use of spatial analysis in the control and risk assessment of vector-borne diseases. Am Entomol (Lanham Md) 45: 173183.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    de Melo DP , Scherrer LR , Eiras ÁE , 2012. Dengue fever occurrence and vector detection by larval survey, ovitrap and MosquiTRAP: a space-time clusters analysis. PLoS One 7: e42125.

    • Search Google Scholar
    • Export Citation
  • 14.

    Avilés G , Rangeón G , Vorndam V , Briones A , Baroni P , Enria D , Sabattini MS , 1999. Dengue reemergence in Argentina. Emerg Infect Dis 5: 575578.

    • Search Google Scholar
    • Export Citation
  • 15.

    Estallo EL , Ludueña-Almeida FF , Introini MV , Zaidenberg M , Almirón WR , 2015. Weather variability associated with Aedes (Stegomyia) aegypti (dengue vector) oviposition dynamics in northwestern Argentina. PLoS One 10: e0127820.

    • Search Google Scholar
    • Export Citation
  • 16.

    Gil JF et al.2016. Spatial spread of dengue in a non-endemic tropical city in northern Argentina. Acta Trop 158: 2431.

  • 17.

    Instituto Nacional de Estadistica y Censos , n.d. Censo 2010. Available at: https://www.indec.gob.ar/indec/web/Nivel4-Tema-2-41-135. Accessed May 5, 2022.

  • 18.

    Lomáscolo T , Brown A , Malizia L , 2017. [Yungas Biosphere Reserve]. Fundación ProYungas. Ediciones del Subtrópico, 22–34.

  • 19.

    Arroyo A , 2004. [Productive diagnosis of the department of Oran]. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación experimental Yuto. 1–13.

  • 20.

    Kappelle M , Brown A , 2001. [Neotropic cloud forest]. Costa Rica, Instituto Nacional de Biodiversidad (INBio). 623–659.

  • 21.

    Nascimento KL , da Silva JF , Zequi JA , Lopes J , 2020. Comparison between larval survey index and positive ovitrap index in the evaluation of populations of Aedes (Stegomyia) aegypti (Linnaeus, 1762) north of Paraná, Brazil. Environ Health Insights 14: 18.

    • Search Google Scholar
    • Export Citation
  • 22.

    Darsie R , 1985. Mosquitoes of Argentina: I. Keys for identification of adult females and fourth stage larvae in English and Spanish (Diptera, Culicidae). Mosq Syst 17: 153253.

    • Search Google Scholar
    • Export Citation
  • 23.

    Reiter P , Nathan MB , 2001. Guidelines for the evaluation of the efficacy of insecticides space spraying for the control of the dengue vector Aedes aegypti. WHO regional office for south-east Asia. 1–38.

  • 24.

    Kulldorff M , 1997. Theory and methods a spatial scan statistic. Commun Stat 26: 14811496.

  • 25.

    Chanampa M et al.2018. Field comparison of oviposition substrates used in ovitraps for Aedes aegypti surveillance in Salta, Argentina. J Appl Entomol 142: 985990.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Dominguez M , Ludueña Almeida F , Almiron W , 2000. Population dynamics of Aedes aegypti (Diptera: Culicidae) in Córdoba Capital. Rev Soc Entomol Argent 59: 4150.

    • Search Google Scholar
    • Export Citation
  • 27.

    Mangudo C , Aparicio JP , Gleiser RM , 2015. Tree holes as larval habitats for Aedes aegypti in urban, suburban and forest habitats in a dengue affected area. Bull Entomol Res 105: 679684.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Reiter P , Amador MA , Anderson RA , Clark GG , 1995. Short report: dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. Am J Trop Med Hyg 52: 177179.

    • Search Google Scholar
    • Export Citation
  • 29.

    Harwood JF , Helmey WL , Turnwall BB , Justice KD , Farooq M , Richardson AG , 2016. Controlling Aedes aegypti in cryptic environments with manually carried ultra-low volume and mist blower pesticide applications. J Am Mosq Control Assoc 32: 217223.

    • Search Google Scholar
    • Export Citation
  • 30.

    Pan American Health Organization , 2018. Integrated management strategy for dengue prevention and control in the region of the Americas. Washington, DC: Pan American Health Organization.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Watts DM , Burke DS , Harrison BA , Whitmire RE , Nisalak A , 1987. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg 36: 143152.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Bohra A , Andrianasolo H , 2001. Application of GIS in modeling of dengue risk based on sociocultural data: case of Jalore. Dengue Bull 25: 92102.

    • Search Google Scholar
    • Export Citation
  • 33.

    Ferreira A , Chiaravalloti-Neto F , 2007. Infestation of an urban area by Aedes aegypti and relation with socioeconomic levels. Rev Saude Publica 41: 16.

    • Search Google Scholar
    • Export Citation
  • 34.

    Brugueras S , Fernández-Martínez B , Martínez-de la Puente J , Figuerola J , Porro TM , Rius C , Larrauri A , Gómez-Barroso D , 2020. Environmental drivers, climate change and emergent diseases transmitted by mosquitoes and their vectors in southern Europe: a systematic review. Environ Res 191: 110038.

    • Search Google Scholar
    • Export Citation
  • 35.

    Chadee DD , Corbet PS , Talbot H , 1995. Proportions of eggs laid by Aedes aegypti on different substrates within an ovitrap in Trinidad, West Indies. Med Vet Entomol 9: 6670.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 1537 1537 17
Full Text Views 99 99 18
PDF Downloads 99 99 14
 
 
 
 
 
 
 
 
 
 
 

Use of Aedes aegypti Oviposition Surveillance and a Geographic Information System for Planning Anti-Vectorial Measures

Daira N. Abán MoreyraInstituto de Investigación en Energía No Convencional, Departamento de Física, Universidad Nacional de Salta, Salta, Argentina;

Search for other papers by Daira N. Abán Moreyra in
Current site
Google Scholar
PubMed
Close
,
Paola M. CastilloInstituto de Investigación en Energía No Convencional, Departamento de Física, Universidad Nacional de Salta, Salta, Argentina;

Search for other papers by Paola M. Castillo in
Current site
Google Scholar
PubMed
Close
,
Andrés EscaladaInstituto de Investigaciones de Enfermedades Tropicales, Sede Regional Orán, Universidad Nacional de Salta, Orán, Argentina;

Search for other papers by Andrés Escalada in
Current site
Google Scholar
PubMed
Close
,
Carolina MangudoInstituto de Investigación en Energía No Convencional, Departamento de Física, Universidad Nacional de Salta, Salta, Argentina;

Search for other papers by Carolina Mangudo in
Current site
Google Scholar
PubMed
Close
,
Griselda N. CopaInstituto de Investigaciones de Enfermedades Tropicales, Sede Regional Orán, Universidad Nacional de Salta, Orán, Argentina;
Cátedra de Química Biológica y Biología Molecular, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina;

Search for other papers by Griselda N. Copa in
Current site
Google Scholar
PubMed
Close
,
Raquel M. GleiserUniversidad Nacional de Córdoba- CONICET, Instituto Multidisciplinario de Biología Vegetal, Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales, Córdoba, Argentina;
Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Ecología, Universidad Nacional de Córdoba, Córdoba, Argentina

Search for other papers by Raquel M. Gleiser in
Current site
Google Scholar
PubMed
Close
,
Julio R. NasserCátedra de Química Biológica y Biología Molecular, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina;

Search for other papers by Julio R. Nasser in
Current site
Google Scholar
PubMed
Close
, and
José F. GilInstituto de Investigación en Energía No Convencional, Departamento de Física, Universidad Nacional de Salta, Salta, Argentina;
Instituto de Investigaciones de Enfermedades Tropicales, Sede Regional Orán, Universidad Nacional de Salta, Orán, Argentina;
Cátedra de Química Biológica y Biología Molecular, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina;

Search for other papers by José F. Gil in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

ABSTRACT.

Arboviruses transmitted by Aedes aegypti pose a threat to global public health. Because there are no vaccines or drugs available, the prevention of these diseases in Argentina is based on integrated vector control. In this work, the spatiotemporal dynamics of the vector distribution was analyzed by monitoring oviposition. This information allowed the planning of anti-vector interventions and the evaluation of their effect on the relative abundance of mosquito populations in San Ramón de la Nueva Orán. Observed data were compared with the eggs expected via a statistical model based on meteorological variables. The oviposition substrate preference of mosquito females was also evaluated, and the possible relationship between the relative abundance of the vector and sociodemographic and environmental variables (normalized difference vegetation index and normalized difference water index) was explored. A total of 4,193 eggs of Ae. aegypti were collected, and spatial clusters were detected for all months for which the presence of the mosquito was reported. The observed number of eggs was significantly less than the expected-corrected egg abundance. A significant correlation of oviposition activity was found with three sociodemographic variables, whereas no significant correlation was found with mean or median values of the environmental variables studied. This monitoring strategy made it possible to address the interventions and evaluate them, proposing them as good complementary tools for the control of Ae. aegypti in northern Argentina.

    • Supplemental Materials (PDF 1070 KB)

Author Notes

Address correspondence to José F. Gil, Instituto de Investigación en Energía No Convencional (INENCO-CONICET), Departamento de Física, Universidad Nacional de Salta. Av. Bolivia 5150 - CP 4400, Salta, Argentina. E-mail: jgil@conicet.gov.ar

Authors’ addresses: Daira N. Abán Moreyra, Paola M. Castillo, and Carolina Mangudo, Instituto de Investigación en Energía No Convencional, Departamento de Física, Universidad Nacional de Salta, Salta, Argentina, E-mails: dnabanmoreyra@gmail.com, castillopaom@gmail.com, and cmangudo@conicet.gov.ar. Andrés Escalada, Instituto de Investigaciones de Enfermedades Tropicales, Sede Regional Orán, Universidad Nacional de Salta, Orán, Argentina, E-mail: andresestebanescalada@gmail.com. Griselda N. Copa, Instituto de Investigaciones de Enfermedades Tropicales, Sede Regional Orán, Universidad Nacional de Salta, Orán, Argentina, and Cátedra de Química Biológica y Biología Molecular, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina, E-mail: noemicopa@conicet.gov.ar. Raquel M. Gleiser, Universidad Nacional de Córdoba,- CONICET, Instituto Multidisciplinario de Biología Vegetal, Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales, Córdoba, Argentina, and Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Ecología, Universidad Nacional de Córdoba, Córdoba, Argentina, E-mail: raquel.gleiser@unc.edu.ar. Julio R. Nasser, Cátedra de Química Biológica y Biología Molecular, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina, E-mail: jrnasser@hotmail.com. José F. Gil, Instituto de Investigación en Energía No Convencional, Departamento de Física, Universidad Nacional de Salta, Salta, Argentina, Instituto de Investigaciones de Enfermedades Tropicales, Sede Regional Orán, Universidad Nacional de Salta, Orán, Argentina, and Cátedra de Química Biológica y Biología Molecular, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina, E-mail: jgil@conicet.gov.ar.

Save