Jones R et al.2020. Arbovirus vectors of epidemiological concern in the Americas: a scoping review of entomological studies on Zika, dengue and chikungunya virus vectors. PLoS One 15: e0220753.
Meltzer MI , Rigau-Pérez JG , Clark GG , Reiter P , Gubler DJ , 1998. Using disability-adjusted life years to assess the economic impact of dengue in Puerto Rico: 1984–1994. Am J Trop Med Hyg 59: 265–271.
Silva JVJ , Lopes TRR , de Oliveira-Filho EF , Oliveira RAS , Durães-Carvalho R , Gil LHVG , 2018. Current status, challenges and perspectives in the development of vaccines against yellow fever, dengue, Zika and chikungunya viruses. Acta Trop 182: 257–263.
Corbel V et al.2019. Second WIN international conference on “Integrated approaches and innovative tools for combating insecticide resistance in vectors of arboviruses,” October 2018, Singapore. Parasite Vector 12: 331.
Eiman M , Introini MV , Ripoll C , 2010. Guidelines for the prevention and control of Aedes aegypti. Minist Salud la Nación 1–75.
World Health Organization , 2009. Dengue Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. Available at: https://apps.who.int/iris/handle/10665/44188. Accessed May 5, 2022.
Vaux AGC et al.2019. The challenge of invasive mosquito vectors in the U.K. during 2016–2018: a summary of the surveillance and control of Aedes albopictus. Med Vet Entomol 33: 443–452.
Reiter P , 2007. Oviposition, dispersal, and survival in Aedes aegypti: implications for the efficacy of control strategies. Vector Borne Zoonotic Dis 7: 261–273.
Schultes OL , Morais MHF , Cunha MDCM , Sobral A , Caiaffa WT , 2021. Spatial analysis of dengue incidence and Aedes aegypti ovitrap surveillance in Belo Horizonte, Brazil. Trop Med Int Health 26: 237–255.
Guagliardo SA , Barboza JL , Morrison AC , Astete H , Vazquez-Prokopec G , Kitron U , 2014. Patterns of geographic expansion of Aedes aegypti in the Peruvian Amazon. PLoS Negl Trop Dis 8: e3033.
Estallo EL , Más G , Vergara-Cid C , Lanfri MA , Ludueña-Almeida F , Scavuzzo CM , Introini MV , Zaidenberg M , Almirón WR , 2013. Spatial patterns of high Aedes aegypti oviposition activity in northwestern Argentina. PLoS One 8: e54167.
Focks DA , Trosper JH , Brenner J , Chadee D , 1994. The use of spatial analysis in the control and risk assessment of vector-borne diseases. Am Entomol (Lanham Md) 45: 173–183.
de Melo DP , Scherrer LR , Eiras ÁE , 2012. Dengue fever occurrence and vector detection by larval survey, ovitrap and MosquiTRAP: a space-time clusters analysis. PLoS One 7: e42125.
Avilés G , Rangeón G , Vorndam V , Briones A , Baroni P , Enria D , Sabattini MS , 1999. Dengue reemergence in Argentina. Emerg Infect Dis 5: 575–578.
Estallo EL , Ludueña-Almeida FF , Introini MV , Zaidenberg M , Almirón WR , 2015. Weather variability associated with Aedes (Stegomyia) aegypti (dengue vector) oviposition dynamics in northwestern Argentina. PLoS One 10: e0127820.
Gil JF et al.2016. Spatial spread of dengue in a non-endemic tropical city in northern Argentina. Acta Trop 158: 24–31.
Instituto Nacional de Estadistica y Censos , n.d. Censo 2010. Available at: https://www.indec.gob.ar/indec/web/Nivel4-Tema-2-41-135. Accessed May 5, 2022.
Lomáscolo T , Brown A , Malizia L , 2017. [Yungas Biosphere Reserve]. Fundación ProYungas. Ediciones del Subtrópico, 22–34.
Arroyo A , 2004. [Productive diagnosis of the department of Oran]. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación experimental Yuto. 1–13.
Kappelle M , Brown A , 2001. [Neotropic cloud forest]. Costa Rica, Instituto Nacional de Biodiversidad (INBio). 623–659.
Nascimento KL , da Silva JF , Zequi JA , Lopes J , 2020. Comparison between larval survey index and positive ovitrap index in the evaluation of populations of Aedes (Stegomyia) aegypti (Linnaeus, 1762) north of Paraná, Brazil. Environ Health Insights 14: 1–8.
Darsie R , 1985. Mosquitoes of Argentina: I. Keys for identification of adult females and fourth stage larvae in English and Spanish (Diptera, Culicidae). Mosq Syst 17: 153–253.
Reiter P , Nathan MB , 2001. Guidelines for the evaluation of the efficacy of insecticides space spraying for the control of the dengue vector Aedes aegypti. WHO regional office for south-east Asia. 1–38.
Kulldorff M , 1997. Theory and methods a spatial scan statistic. Commun Stat 26: 1481–1496.
Chanampa M et al.2018. Field comparison of oviposition substrates used in ovitraps for Aedes aegypti surveillance in Salta, Argentina. J Appl Entomol 142: 985–990.
Dominguez M , Ludueña Almeida F , Almiron W , 2000. Population dynamics of Aedes aegypti (Diptera: Culicidae) in Córdoba Capital. Rev Soc Entomol Argent 59: 41–50.
Mangudo C , Aparicio JP , Gleiser RM , 2015. Tree holes as larval habitats for Aedes aegypti in urban, suburban and forest habitats in a dengue affected area. Bull Entomol Res 105: 679–684.
Reiter P , Amador MA , Anderson RA , Clark GG , 1995. Short report: dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. Am J Trop Med Hyg 52: 177–179.
Harwood JF , Helmey WL , Turnwall BB , Justice KD , Farooq M , Richardson AG , 2016. Controlling Aedes aegypti in cryptic environments with manually carried ultra-low volume and mist blower pesticide applications. J Am Mosq Control Assoc 32: 217–223.
Pan American Health Organization , 2018. Integrated management strategy for dengue prevention and control in the region of the Americas. Washington, DC: Pan American Health Organization.
Watts DM , Burke DS , Harrison BA , Whitmire RE , Nisalak A , 1987. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg 36: 143–152.
Bohra A , Andrianasolo H , 2001. Application of GIS in modeling of dengue risk based on sociocultural data: case of Jalore. Dengue Bull 25: 92–102.
Ferreira A , Chiaravalloti-Neto F , 2007. Infestation of an urban area by Aedes aegypti and relation with socioeconomic levels. Rev Saude Publica 41: 1–6.
Brugueras S , Fernández-Martínez B , Martínez-de la Puente J , Figuerola J , Porro TM , Rius C , Larrauri A , Gómez-Barroso D , 2020. Environmental drivers, climate change and emergent diseases transmitted by mosquitoes and their vectors in southern Europe: a systematic review. Environ Res 191: 110038.
Chadee DD , Corbet PS , Talbot H , 1995. Proportions of eggs laid by Aedes aegypti on different substrates within an ovitrap in Trinidad, West Indies. Med Vet Entomol 9: 66–70.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1537 | 1537 | 17 |
Full Text Views | 99 | 99 | 18 |
PDF Downloads | 99 | 99 | 14 |
Arboviruses transmitted by Aedes aegypti pose a threat to global public health. Because there are no vaccines or drugs available, the prevention of these diseases in Argentina is based on integrated vector control. In this work, the spatiotemporal dynamics of the vector distribution was analyzed by monitoring oviposition. This information allowed the planning of anti-vector interventions and the evaluation of their effect on the relative abundance of mosquito populations in San Ramón de la Nueva Orán. Observed data were compared with the eggs expected via a statistical model based on meteorological variables. The oviposition substrate preference of mosquito females was also evaluated, and the possible relationship between the relative abundance of the vector and sociodemographic and environmental variables (normalized difference vegetation index and normalized difference water index) was explored. A total of 4,193 eggs of Ae. aegypti were collected, and spatial clusters were detected for all months for which the presence of the mosquito was reported. The observed number of eggs was significantly less than the expected-corrected egg abundance. A significant correlation of oviposition activity was found with three sociodemographic variables, whereas no significant correlation was found with mean or median values of the environmental variables studied. This monitoring strategy made it possible to address the interventions and evaluate them, proposing them as good complementary tools for the control of Ae. aegypti in northern Argentina.
Authors’ addresses: Daira N. Abán Moreyra, Paola M. Castillo, and Carolina Mangudo, Instituto de Investigación en Energía No Convencional, Departamento de Física, Universidad Nacional de Salta, Salta, Argentina, E-mails: dnabanmoreyra@gmail.com, castillopaom@gmail.com, and cmangudo@conicet.gov.ar. Andrés Escalada, Instituto de Investigaciones de Enfermedades Tropicales, Sede Regional Orán, Universidad Nacional de Salta, Orán, Argentina, E-mail: andresestebanescalada@gmail.com. Griselda N. Copa, Instituto de Investigaciones de Enfermedades Tropicales, Sede Regional Orán, Universidad Nacional de Salta, Orán, Argentina, and Cátedra de Química Biológica y Biología Molecular, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina, E-mail: noemicopa@conicet.gov.ar. Raquel M. Gleiser, Universidad Nacional de Córdoba,- CONICET, Instituto Multidisciplinario de Biología Vegetal, Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales, Córdoba, Argentina, and Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Ecología, Universidad Nacional de Córdoba, Córdoba, Argentina, E-mail: raquel.gleiser@unc.edu.ar. Julio R. Nasser, Cátedra de Química Biológica y Biología Molecular, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina, E-mail: jrnasser@hotmail.com. José F. Gil, Instituto de Investigación en Energía No Convencional, Departamento de Física, Universidad Nacional de Salta, Salta, Argentina, Instituto de Investigaciones de Enfermedades Tropicales, Sede Regional Orán, Universidad Nacional de Salta, Orán, Argentina, and Cátedra de Química Biológica y Biología Molecular, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina, E-mail: jgil@conicet.gov.ar.