• 1.

    Schneider JR et al., 2011. Heritability and adaptive phenotypic plasticity of adult body size in the mosquito Aedes aegypti with implications for dengue vector competence. Infect Genet Evol 11: 1116.

    • Search Google Scholar
    • Export Citation
  • 2.

    Herrera F, Urdaneta L, Rivero J, Zoghbi N, Ruiz J, Carrasquel G, Martínez J, 2006. Estructura genética poblacional del mosquito del dengue Aedes aegypti en Venezuela. Mem Inst Oswaldo Cruz. Fundação Oswaldo Cruz 101: 625633.

    • Search Google Scholar
    • Export Citation
  • 3.

    Dueñez J, Arboleda S, Triana-Chávez O, Gómez-Palacio A, 2015. Spatio-temporal distribution of Aedes aegypti (Diptera: Culicidae) mitochondrial lineages in cities with distinct dengue incidence rates suggests complex population dynamics of the dengue vector in Colombia. PLoS Negl Trop Dis 9: e0003553.2015.

    • Search Google Scholar
    • Export Citation
  • 4.

    Consoli R, De Olivera R, 1994. Principais Mosquitos de Importancia Sanitaria no Brasil. Rio de Janeiro, Brazil: FIOCRUZ.

  • 5.

    Eskildsen G, Rovira J, Smith O, Miller M, Bennett K, McMillan W, Loaiza J, 2018. Maternal invasion history of Aedes aegypti and Aedes albopictus into the Isthmus of Panama: Implications for the control of emergent viral disease agents. PLoS One 13: e0194874.

    • Search Google Scholar
    • Export Citation
  • 6.

    Villamizar A, Carvajal L, 2017. Influencia de los cambios climático en la definición del sexo en el Aedes aegypti y su impacto en las epidemias de dengue. Revista Facultad De Salud 4: 1124.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ministerio de Salud Pública y Bienestar Social , 2021. Available at: https://www.mspbs.gov.py/portal/23119/notificaciones-de-dengue-en-aumento-progresivo.html. Accessed June 20, 2021.

    • PubMed
    • Export Citation
  • 8.

    Ministerio de Salud Pública y Bienestar Social , 2014. Available at: https://www.mspbs.gov.py/html//2672/nueve-regiones-se-mantienen-en-endemia-por-dengue.html. Accessed June 20, 2021.

  • 9.

    Stein M, Oria G, Almiron W, Willener J, 2005. Fluctuación estacional de Aedes aegypti en Chaco, Argentina. Rev Saude Publica 39: 559564.

  • 10.

    Dirección General de Vigilancia de la Salud, 2018. Available at: http://dgvs.mspbs.gov.py/webdgvs/files/boletines/SE52_2018_Boletin.pdf. Accessed June 4, 2021.

  • 11.

    Azil AH, Long SA, Ritchie SA, Williams CR, 2010. The development of predictive tools for pre-emptive dengue vector control: a study of Aedes aegypti abundance and meteorological variables in North Queensland, Australia. Trop Med Int Health 15: 11901197.

    • Search Google Scholar
    • Export Citation
  • 12.

    Li Y et al., 2014. Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS Negl Trop Dis 8: e3301.

    • Search Google Scholar
    • Export Citation
  • 13.

    CEPAL , 2014. La Economía del Cambio Climático en el Paraguay (LC/W.617). Available at: https://repositorio.cepal.org/bitstream/handle/11362/37101/S1420018_es.pdf?sequence=1&isAllowed=y. Accessed June 21, 2021.

    • PubMed
    • Export Citation
  • 14.

    Betancourt BJA, Llambias PJJ, Nicolau PE, Cira LR, 2017. Interaction of weather variables with dengue and Aedes aegypti in the municipality of Camagüey. Rev Cubana Med Trop 69: 110. Available at: http://www.revmedtropical.sld.cu/index.php/medtropical/article/view/133. Accessed May 2, 2021.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Gould SH, 2009. Impact of climate change and other factors on emerging arbovirus diseases. Trans R Soc Trop Med Hyg 103: 109121.

  • 16.

    Uribe R et al., 2012. Influencia del evento climático El Niño sobre la dinámica de transmisión dengue en Medellín, Antioquia, Colombia. Iatreia 25: 314322. Available at: https://www.redalyc.org/articulo.oa?id=180524364002. Accessed January 9, 2021.

    • Search Google Scholar
    • Export Citation
  • 17.

    Sendaydiego JP, Torres MJT, Demayo CG, 2013. Describing wing geometry of Aedes Aegypti using landmark-based geometric morphometrics. Int J Biosci Biochem Bioinform 3: 379383.

    • Search Google Scholar
    • Export Citation
  • 18.

    Carzola P, 2009. Diferenciación morfométrica multivariada entre hembras de dos especies crípticas de Lutzomyia subgénero Helcocyrtomyia (Diptera: Psychodidae). Rev Colomb Entomol 35: 197201. Available at: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-04882009000200015&lng=en. Accessed January 9, 2021.

    • Search Google Scholar
    • Export Citation
  • 19.

    Wilk-da-Silva R, de Souza Leal Diniz MMC, Marrelli MT, 2018. Wing morphometric variability in Aedes aegypti (Diptera: Culicidae) from different urban built environments. Parasit Vectors 11: 561.

    • Search Google Scholar
    • Export Citation
  • 20.

    Jirakanjanakit N, Leemingsawat S, Thongrungkiat S, Apiwathnasorn C, Singhaniyom S, Bellec C, Dujardin JP, 2007. Influence of larval density or food variation on the geometry of the wing of Aedes (Stegomyia) aegypti. Trop Med Int Health 12: 13541360.

    • Search Google Scholar
    • Export Citation
  • 21.

    Pastén M, Gonzalez V & Espínola C. 2011. Clasificación Climática del Paraguay Utilizando los Métodos de Köppen y Thornthwaite. Universidad Nacional de Asunción – DGICT. Available at: http://sdi.cnc.una.py/catbib/documentos/525.pdf. Accessed July 26, 2021.

  • 22.

    Quintero Gil DC, Osorio Benítez JE, Martínez Gutiérrez M, 2012. Competencia vectorial: consideraciones entomológicas y su influencia sobre la epidemiología del dengue. Iatreia 23: 146156. Available at: https://revistas.udea.edu.co/index.php/iatreia/article/view/11128. Accessed July 26, 2021.

    • Search Google Scholar
    • Export Citation
  • 23.

    Secretaría del Ambiente (SEAM), Municipalidad de Asunción & PNUD , 2008. GEO Asunción del Paraguay. Perspectivas del medio ambiente urbano.

    • Search Google Scholar
    • Export Citation
  • 24.

    AlterVida , 2001. Plan de Ordenamiento Territorial y Ambiental de Itauguá. Municipalidad de Itauguá, Paraguay. Available at: http://www.geam.org.py/v3/uploads/2011/11/200909251054490.POTA-ITAUGUA.pdf. Accessed January 14, 2022.

  • 25.

    Grassi B, 2020. Estudio del Clima Paraguay 2019. MADES-STP. Asunción, Paraguay.

  • 26.

    Geodatos , 2021. Paraguay Geographic Coordinates – Latitude and Longitude. Available at: https://www.geodatos.net/en/coordinates/paraguay. Accessed October 15, 2021.

  • 27.

    Ministerio del Ambiente y Desarrollo Sostenible , 2013. Resolucion 614/2013 “Por la cual se Establecen las Ecorregiones para la Regiones Oriental y Occidental del Paraguay.” Available at: http://www.mades.gov.py/wp-content/uploads/2018/07/res_seam_614-2013.pdf. Accessed June 20, 2020.

  • 28.

    Sampieri RH, 2018. Metodología de la Investigación: Las Rutas Cuantitativa, Cualitativa y Mixta. McGraw-Hill Interamericana. Available at: https://books.google.com.py/books?id=5A2QDwAAQBAJ. Accessed May 2, 2020.

    • PubMed
    • Export Citation
  • 29.

    Androidseb , 2014. Map Marker Version 2.19.1_360. Available at: https://android-apk.org/com.exlyo.mapmarker/57575212-map-marker/. Accessed March 2019.

  • 30.

    QGIS version 3.8.2—Zanzibar. September 15, 2018.

  • 31.

    Zelditch ML, Swiderski DL, Sheets HD, Fink WL , 2004. Geometric Morphometrics for Biologists: A Primer. Elsevier Academic. Available at: https://books.google.es/books?id=LKCVAGn8vkoC. Accessed September 15, 2020.

    • Search Google Scholar
    • Export Citation
  • 32.

    Strauss RE, 2010. Discriminating groups of organisms, pp. 73–91. In: E. Ashraf (ed.). Morphometrics for Nonmorphometricians. Lecture Notes in Earth Sciences 124 Springer-Verlag.

    • PubMed
    • Export Citation
  • 33.

    Hammer O, Harper A, Ryan D, 2001. Past: Paleontological Statistics Software Package for education and data analysis. Paleontol Electronica 44: 4.

  • 34.

    Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW, 2020. InfoStat versión 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Available at: http://www.infostat.com.ar.

  • 35.

    Badii M, Garza-Almanza V, Landeros J, Quiroz H, 2015. Diversidad Y Relevancia De Los Mosquitos. Cult Científ Tecnol 13. Available at: https://erevistas.uacj.mx/ojs/index.php/culcyt/article/view/520. Accessed June 16, 2015.

    • Search Google Scholar
    • Export Citation
  • 36.

    Chaiphongpachara T, Juijayen N, Chansukh KK, 2018. Análisis de la geometría del ala de Aedes aegypti (Diptera, Culicidae), un vector del virus del dengue, de múltiples ubicaciones geográficas de Samut Songkhram, Tailandia. Rev Enfermedades Transmitidas Artrópodos 12: 351360.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Alto BW, Lounibos LP, Mores CN, Reiskind MH, 2008. Larval competition alters susceptibility of adult Aedes mosquitoes to dengue infection. Proc Biol Sci 275: 463471.

    • Search Google Scholar
    • Export Citation
  • 38.

    Briegel H, Timmermann SE, 2001. Aedes albopictus (Diptera: Culicidae): aspectos fisiológicos del desarrollo y la reproducción. J Med Entomol 38: 566571.

    • Search Google Scholar
    • Export Citation
  • 39.

    Borror DJ, Triplehorn C, Johnson N, 1989. An Introduction to the Study of Insect. Philadelphia, PA: Saunders College Publishing.

  • 40.

    Endersby N, Hoffmann A, White V, Ritchie S, Johnson P, Weeks A, 2011. Cambios en la estructura genética de las poblaciones de Aedes aegypti (Diptera: Culicidae) en Queensland, Australia, across two seasons: implications for potential mosquito releases. J Med Entomol 48: 9991007.

    • Search Google Scholar
    • Export Citation
  • 41.

    Galindo G, Contreras C, Hernández C, 2016. Colección Salud Humana Vigilancia Sindrómica y Alerta Epidemiológica Geomedicina y la Tecnología Espacial Aplicada al Caso de los Vectores en Salud Humana. Available at: https://www.researchgate.net/publication/330981126_COLECCION_SALUD_HUMANA_Vigilancia_sindromica_y_alerta_epidemiologica_GEOMEDICINA_Y_LA_TECNOLOGIA_ESPACIAL_APLICADA_AL_CASO_DE_LOS_VECTORES_EN_SALUD_HUMANA.

  • 42.

    Blackmore MS, Lord CC, 2000. The relationship between size and fecundity in Aedes albopictus. J Vector Ecol 25: 212217.

  • 43.

    Morales Vargas RE, Ya-umphan P, Phumala-Morales N, Komalamisra N, Dujardin J-P, 2010. Climate associated size and shape changes in Aedes aegypti (Diptera: Culicidae) populations from Thailand. Infect Genet Evol 10: 580585.

    • Search Google Scholar
    • Export Citation
  • 44.

    Rey JR, Lounibos P, 2015. Ecología de Aedes aegypti y Aedes albopictus en América y transmisión de enfermedades. Biomedica 35: 177185. Available at: https://revistabiomedica.org/index.php/biomedica/article/view/2514. Accessed May 14, 2020.

    • Search Google Scholar
    • Export Citation
  • 45.

    Burroni N, Prunella P, Schweigmann N, Loetti V, 2013. Ovitraps placed in dwellings and on public paved areas for Aedes aegypti (Diptera: Culicidae) monitoring. Rev Colomb Entomol 39: 5660.

    • Search Google Scholar
    • Export Citation
  • 46.

    Sánchez-Díaz E, Gleiser RM, Lopez LR, Guzman C, Contigiani MS, Spinsanti L, Gardenal CN, Gorla DE, 2022. Oviposition dynamics of Aedes aegypti in Central Argentina. Med Vet Entomol 36: 4355.

    • Search Google Scholar
    • Export Citation
  • 47.

    Ayorinde AF, Oboh BO, Otubanjo OA, 2016. Differentiation of some populations of Aedes aegypti (Diptera: Culicidae) in three areas of Lagos State, Nigeria, using wing morphometry. Int J Trop Insect Science 36: 171176.

    • Search Google Scholar
    • Export Citation
  • 48.

    Gomez G, Marquez E, Gutierrez L, Conn J, Correa M, 2014. Geometric morphometric analysis of Colombian Anopheles albimanus (Diptera: Culicidae) reveals significant effect of environmental factors on wing traits and Briegel presence of a metapopulation. Acta Trop 135: 7585.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 386 386 45
Full Text Views 21 21 4
PDF Downloads 31 31 2
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Phenotypic Variations of Aedes aegypti Populations and Egg Abundance According to Environmental Parameters in Two Dengue-Endemic Ecoregions in Paraguay

View More View Less
  • 1 Centro para el Desarrollo de la Investigación Científica, Asunción, Paraguay;
  • | 2 Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, Departamento de Biología, Laboratorio de Mutagénesis, Carcinogénesis y Teratogénesis Ambiental, San Lorenzo, Paraguay
Restricted access

ABSTRACT.

Dengue in Paraguay is an endemic disease of public health importance. Several studies suggest that an increased density of Aedes aegypti and the presence of dengue cases may be associated with climatic conditions. This study aimed to establish the phenotypic variations of Ae. aegypti from four cities (Asunción, Itauguá, Minga Guazú, and Ciudad del Este) and the potential association of environmental variables with the number of eggs in capture sites. Eleven morphometric phenotypic characters were evaluated, and environmental data were obtained from Earth Engine and local meteorological stations. An analysis was carried out using principal component analysis and linear discriminant analysis, and we estimated the correlation using [relative humidity, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI)] between variables and the number of eggs in each site. Differences in mean NDVI and NDWI between cities and their relationship with the morphometric performance of individuals were also assessed. The study demonstrated morphometric variations between the populations of Ae. aegypti from two ecoregions, with the Litoral ecoregion populations presented a greater phenotypic variation than those observed in the Alto Paraná ecoregion. Significant statistical associations were registered between the number of eggs with relative humidity (r = –0.45) and the NDVI at 100 meters from the capture points (r = –0.61) for Minga Guazú, and with the NDWI at 100 meters (r = 0.54) for Ciudad del Este. Future studies on these Ae. aegypti populations, and its dispersion could contribute to improve vector control measures and foster future genetic studies.

    • Supplemental Materials (PDF 143 KB)

Author Notes

Address correspondence to Antonieta Rojas de Arias, Centro para el Desarrollo de la Investigación Científica, Manduvirá 635 entre 15 de agosto y O’Leary, Asunción, Paraguay. E-mail: rojasdearias@gmail.com

Financial support: The current study corresponds to the Milena Britos Master’s Program in Disaster Risk Management and Adaptation to Climate Change of the Catholic University “Nuestra Señora de la Asuncion,” funded by the National Council of Science and Technology (CONACyT). Also, Antonieta Rojas de Arias and Elvio Gayozo Melgarejo thank the National Researchers Incentive Program (PRONII) of the CONACyT.

Authors’ addresses: Milena Britos Molinas and Antonieta Rojas de Arias, Centro para el Desarrollo de la Investigación Científica, Asunción, Paraguay, E-mail: milebritosb011@gmail.com and rojasdearias@gmail.com. Elvio Gayozo Melgarejo, Departamento de Biología, Laboratorio de Mutagénesis, Carcinogénesis y Teratogénesis Ambiental, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo, Paraguay, E-mail: elviologo@gmail.com.

Save