Developing Molecular Surveillance Capacity for Asymptomatic and Drug-Resistant Malaria in a Resource-Limited Setting—Experiences and Lessons Learned

Kay Thwe Han Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar;

Search for other papers by Kay Thwe Han in
Current site
Google Scholar
PubMed
Close
,
Zay Yar Han Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar;

Search for other papers by Zay Yar Han in
Current site
Google Scholar
PubMed
Close
, and
Kayvan Zainabadi Center for Global Health, Weill Cornell Medicine, New York, New York

Search for other papers by Kayvan Zainabadi in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT.

The COVID-19 pandemic has highlighted the important role molecular surveillance plays in public health. Such capacity however is either weak or nonexistent in many low-income countries. This article outlines a 2-year effort to establish two high-throughput molecular surveillance laboratories in Myanmar for tracking asymptomatic and drug resistant Plasmodium falciparum malaria. The lessons learned from this endeavor may prove useful for others seeking to establish similar molecular surveillance capacity in other resource-limited settings.

Author Notes

Address correspondence to Kayvan Zainabadi, Weill Cornell Medicine, Center for Global Health, 402 East 67th St., 2nd Floor, New York, NY 10021. kayvan@alum.mit.edu

Authors’ addresses: Kay Thwe Han and Zay Yar Han, Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar, E-mails: drkaythwehan@yahoo.com and drzayarhan@gmail.com. Kayvan Zainabadi, Center for Global Health, Weill Cornell Medicine, New York, NY, E-mail: kayvan@alum.mit.edu.

  • 1.

    Yongchen Z , Shen H , Wang X , Shi X , Li Y , Yan J , Chen Y , Gu B , 2020. Different longitudinal patterns of nucleic acid and serology testing results based on disease severity of COVID-19 patients. Emerg Microbes Infect 9: 833836.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Zainabadi K , 2021. Ultrasensitive diagnostics for low density asymptomatic Plasmodium falciparum infections in low transmission settings. J Clin Microbiol 59: e0150820.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    WHO , 2020. World Malaria Report. Geneva, Switzerland: World Health Organization. Available at: https://www.who.int/publications/i/item/9789240015791.

    • PubMed
    • Export Citation
  • 4.

    Perera RS , Ding XC , Tully F , Oliver J , Bright N , Bell D , Chiodini PL , Gonzalez IJ , Polley SD , 2017. Development and clinical performance of high throughput loop-mediated isothermal amplification for detection of malaria. PLoS One 12: e0171126.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Taylor SM , Juliano JJ , Trottman PA , Griffin JB , Landis SH , Kitsa P , Tshefu AK , Meshnick SR , 2010. High-throughput pooling and real-time PCR-based strategy for malaria detection. J Clin Microbiol 48: 512519.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Balikagala B et al.2021. Evidence of artemisinin-resistant malaria in Africa. N Engl J Med 385: 11631171.

  • 7.

    Uwimana A et al.2021. Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: an open-label, single-arm, multicentre, therapeutic efficacy study. Lancet Infect Dis 21: 11201128.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Mu TT , Sein AA , Kyi TT , Min M , Aung NM , Anstey NM , Kyaw MP , Soe C , Kyi MM , Hanson J , 2016. Malaria incidence in Myanmar 2005–2014: steady but fragile progress towards elimination. Malar J 15: 503.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Payne D , 1987. Spread of chloroquine resistance in Plasmodium falciparum. Parasitol Today 3: 241246.

  • 10.

    WHO , 2015. Malaria elimination strategy in the greater Mekong subregion. Geneva, Switzerland: World Health Organization.

  • 11.

    National Malaria Control Program , 2016. National Plan for malaria elimination (NPME) in Myanmar 2016–2030. Naypyitaw, Myanmar.

    • PubMed
    • Export Citation
  • 12.

    Ariey F et al.2014. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505: 5055.

  • 13.

    Witkowski B et al.2017. A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study. Lancet Infect Dis 17: 174183.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Amato R et al.2017. Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study. Lancet Infect Dis 17: 164173.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Imwong M et al.2015. The epidemiology of subclinical malaria infections in South-East Asia: findings from cross-sectional surveys in Thailand–Myanmar border areas, Cambodia, and Vietnam. Malar J 14: 381.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Imwong M et al.2016. Numerical distributions of parasite densities during asymptomatic malaria. J Infect Dis 213: 13221329.

  • 17.

    Okell LC , Bousema T , Griffin JT , Ouédraogo AL , Ghani AC , Drakeley CJ , 2012. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat Commun 3: 1237.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Britton S , Cheng Q , McCarthy JS , 2016. Novel molecular diagnostic tools for malaria elimination: a review of options from the point of view of high-throughput and applicability in resource limited settings. Malar J 15: 88.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Zainabadi K et al.2017. A novel method for extracting nucleic acids from dried blood spots for ultrasensitive detection of low-density Plasmodium falciparum and Plasmodium vivax infections. Malar J 16: 377.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Zainabadi K , Nyunt MM , Plowe CV , 2019. An improved nucleic acid extraction method from dried blood spots for amplification of Plasmodium falciparum kelch13 for detection of artemisinin resistance. Malar J 18: 192.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Apinjoh TO , Ouattara A , Titanji VPK , Djimde A , Amambua-Ngwa A , 2019. Genetic diversity and drug resistance surveillance of Plasmodium falciparum for malaria elimination: is there an ideal tool for resource-limited sub-Saharan Africa? Malar J 18: 217.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Inzaule SC , Tessema SK , Kebede Y , Ogwell Ouma AE , Nkengasong JN , 2021. Genomic-informed pathogen surveillance in Africa: opportunities and challenges. Lancet Infect Dis 21: e281e289.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 18362 523 99
Full Text Views 378 149 0
PDF Downloads 97 10 0
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save