• 1.

    Pan American Health Organization , World Health Organization , n.d. Chagas disease. Available at: https://www.paho.org/en/topics/chagas-disease. Accessed March 21, 2022; doi:10.3390/d12030097

    • Crossref
    • Export Citation
  • 2.

    Hernández C, da Rosa JA, Vallejo GA, Guhl F, Ramírez JD , 2020. Taxonomy, evolution, and biogeography of the Rhodniini tribe (Hemiptera: Reduviidae). Diversity (Basel) 12: 97.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Galvão C, Justi SA , 2015. An overview on the ecology of Triatominae (Hemiptera: Reduviidae). Acta Trop 151: 116125.

  • 4.

    Filée J, Merle M, Bastide H, Mougel F, Bérenger J-M, Folly-Ramos E, Almeida CE, Harry M , 2022. Phylogenomics for Chagas disease vectors of the genus Rhodnius (Hemiptera, Triatominae): what we learn from mito-nuclear conflicts and recommendations. Front Ecol Evol 9: 750317; doi.org/10.3389/fevo.2021.750317; https://www.ncbi.nlm.nih.gov/bioproject/PRJNA4297614

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Oliveira J, Alevi KCC, Ravazi A, Herrera HM, Santos FM, de Azeredo-Oliveira MTV, da Rosa JA , 2018. New evidence of the monophyletic relationship of the genus Psammolestes Bergroth, 1911 (Hemiptera, Reduviidae, Triatominae). Am J Trop Med Hyg 99: 14851488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Mesquita RD et al.2015. Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc Natl Acad Sci USA 112: 1493614941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Panzera F et al.2007. Genome size determination in Chagas disease transmitting bugs (Hemiptera-Triatominae) by flow cytometry. Am J Trop Med Hyg 76: 516521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Panzera F, Pérez R, Panzera Y, Ferrandis I, Ferreiro MJ, Calleros L , 2010. Cytogenetics and genome evolution in the subfamily Triatominae (Hemiptera, Reduviidae). Cytogenet Genome Res 128: 7787.

    • Search Google Scholar
    • Export Citation
  • 9.

    Díaz S, Panzera F, Jaramillo ON, Pérez R, Fernandez R, Vallejo G, Saldana A, Calzada JE, Triana O, Gomez-Palacio A , 2014. Genetic, cytogenetic and morphological trends in the evolution of the Rhodnius (Triatominae: Rhodniini) trans-Andean group. PLoS One 9: e87493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Gómez-Palacio A, Jaramillo-O N, Caro-Riaño H, Diaz S, Monteiro FA, Pérez R, Panzera F, Triana O , 2012. Morphometric and molecular evidence of intraspecific biogeographical differentiation of Rhodnius pallescens (Hemiptera: Reduviidae: Rhodniini) from Colombia and Panama. Infect Genet Evol 12: 19751983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Siljak-Yakovlev S et al.2020. Genome size of Balkan flora: a database (GeSDaBaF) and C-values for 51 taxa of which 46 are novel. Plant Syst Evol 306: 115.

  • 12.

    Marcais G, Kingsford C , 2011. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27: 764770.

    • Search Google Scholar
    • Export Citation
  • 13.

    Vurture GW et al.2017. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33: 22022204.

  • 14.

    Gittleman JL, Kot M , 1990. Adaptation: statistics and a null model for estimating phylogenetic effects. Syst Zool 39: 227241.

  • 15.

    Ives A, Dinnage R, Nell LA, Helmus M, Li D, 2020. phyr: model based phylogenetic analysis. R package version 1.1.0. https://CRAN.R-project.org/package=phyr

    • Crossref
    • Export Citation
  • 16.

    Pflug JM, Holmes VR, Burrus C, Johnston JS, Maddison DR , 2020. Measuring genome sizes using read-depth, k-mers, and flow cytometry: methodological comparisons in beetles (Coleoptera). Genes Genomes Genetics 10: 30473060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Petrov DA , 2001. Evolution of genome size: new approaches to an old problem. Trends Genet 17: 2328.

  • 18.

    Naville M, Henriet S, Warren I, Sumic S, Reeve M, Volff JN, Chourrout D , 2019. Massive changes of genome size driven by expansions of non-autonomous transposable elements. Curr Biol 29: 11611168.

    • Search Google Scholar
    • Export Citation
  • 19.

    Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ , 2018. Genome size diversity and its impact on the evolution of land plants. Genes (Basel) 9: 88; doi:10.3390/genes9020088.

    • Search Google Scholar
    • Export Citation
  • 20.

    Bourgeois Y, Boissinot S , 2019. On the population dynamics of junk: a review on the population genomics of transposable elements. Genes (Basel) 10: 419; doi:10.3390/genes10060419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Perez R, Panzera Y, Scafiezzo S, Mazzella MC, Panzera F, Dujardin JP, Scvortzoff E , 1992. Cytogenetics as a tool for triatomine species distinction (Hemiptera-Reduviidae). Mem Inst Oswaldo Cruz 87: 353361.

    • Search Google Scholar
    • Export Citation
  • 22.

    Alevi KCC, Ravazi A, Mendonça VJ, Rosa JA, Azeredo-Oliveira MTV , 2015. Karyotype of Rhodnius montenegrensis (Hemiptera, Triatominae). Genet Mol Res 12: 222226.

    • Search Google Scholar
    • Export Citation
  • 23.

    Ravazi A, Alevi KCC, Oliveira J, Rosa JA, Azeredo-Oliveira MTV , 2018. Cytogenetic analysis in different populations of Rhodnius prolixus and R. nasutus from different countries of South America. Braz J Biol 78: 183185.

    • Search Google Scholar
    • Export Citation
  • 24.

    Ravazi A, Olaia N, de Oliveira J, Santos Souza ED, Aristeu da Rosa J, Vilela de Azeredo-Oliveira MT, Chaboli Alevi KC , 2021. Revisiting the chromosomal diversification of the genus Rhodnius (Stål, 1859) (Hemiptera, Triatominae). Am J Trop Med Hyg 104: 656658.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 5579 5579 1953
Full Text Views 8 8 2
PDF Downloads 12 12 3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Genome Size Variation of Chagas Disease Vectors of the Rhodniini Tribe

View More View Less
  • 1 Université Paris-Saclay, CNRS, IRD, UMR EGCE, Evolution, Génomes, Comportement et Ecologie, Gif-sur-Yvette, France;
  • | 2 Universidade de São Paulo, Faculdade de Saúde Pública, São Paulo, Brazil;
  • | 3 São Paulo State University, School of Pharmaceutical Sciences, Araraquara, São Paul, Brazil;
  • | 4 University of Campinas–UNICAMP, São Paulo, Brazil;
  • | 5 Université Paris-Saclay, CNRS, AgroParisTech, UMR ESE, Ecologie Systématique et Evolution, Orsay, France
Restricted access

ABSTRACT.

The genome size of five Rhodnius species (R. milesi, R. nasutus, R. neivai, R. prolixus, and R. robustus) and two Psammolestes species (P. coroedes and P. tertius) were estimated using flow cytometry and/or k-mer distributions in genome sequences. Phylogenetic generalized linear mixed models highlighted significant genome size variations among species and between sexes, with R. prolixus showing the largest genome. In this study we provide the first data on female genome size in Triatominae. For five species, female genome size did not differ from males, except for R. robustus, where females had smaller genomes. Genome size estimations based on the k-mer distribution method were less than those estimated from flow cytometry, but both methods exhibited the same pattern of sexual differences. Further genomic studies are needed to infer whether genome size variation could be an adaptive trait in Rhodnius.

Author Notes

Address correspondence to Myriam Harry, UMR EGCE (Evolution, Génomes, Comportement et Ecologie), Université Paris-Saclay, CNRS, IRD, Site IDEEV (Institut de Diversité, Evolution et Ecologie du vivant), 12 route 128, Gif-sur-Yvette, cedex, France. E-mail: myriam.harry@universite-paris-saclay.fr

These authors contributed equally to this work.

Financial support: The project received support from : the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil with a fellows (C.E.A. ) de Produtividade nível 2 (PQ-2), process 307 398/2018-8, Material Transfert Agreement (MTA) No 07/2018; the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPSEP), Brazil, Project number 2017/50329-0; the Fundação de Apoio à Pesquisa do Estado da Paraíba, Brazil, Processo FAPESQ 47896.673.31653.11082021; the Universidade Estadual de Campinas (UNICAMP), Brazil and the Centre National de la Recherche Scientifique (CNRS), France, Sprint project No 2017/50329-0.

Authors’ addresses: Marie Merle, Jonathan Filée, Florence Mougel, Héloïse Bastide, and Myriam Harry, Université Paris-Saclay, CNRS, IRD, UMR EGCE, Evolution, Génomes, Comportement et Ecologie, Gif-sur-Yvette, France, E-mails: marie.merle@universite-paris-saclay.fr, marie.merle@universite-paris-saclay.fr, jonathan.filee@universite-paris-saclay.fr, florence.mougel-imbert@universite-paris-saclay.fr, heloise.bastide@universite-paris-saclay.fr, and myriam.harry@universite-paris-saclay.fr. Jader de Oliveira, Universidade de São Paulo, Faculdade de Saúde Pública, São Paulo, Brazil, and São Paulo State University, School of Pharmaceutical Sciences, Araraquara, São Paul, Salvador (BA), Brazil, E-mail: jdr.oliveira@hotmail.com. Carlos Eduardo Almeida, University of Campinas–UNICAMP, São Paulo, Brazil, current address: Universidade Federal da Bahia–Salvador, Campus Ondina, E-mail: almeida_ce@hotmail.com. João Aristeu da Rosa, São Paulo State University, School of Pharmaceutical Sciences, Araraquara, São Paul, Brazil, E-mail: joaoaristeu@gmail.com. Marc Girondot, Université Paris-Saclay, CNRS, AgroParisTech, UMR ESE, Ecologie Systématique et Evolution, Orsay, France, E-mail: marc.girondot@universite-paris-saclay.fr.

Save