• 1.

    World Health Organization , 2021. Who Guidelines for Malaria 2019. Geneva, Switzerland: WHO.

  • 2.

    Tilley L, Dixon MWA, Kirk K , 2011. The Plasmodium falciparum-infected red blood cell. Int J Biochem Cell Biol 43: 839842.

  • 3.

    Oliveira-Ferreira J, Lacerda MVG, Brasil P, Ladislau JLB, Tauil PL, Daniel-Ribeiro CT , 2010. Malaria in Brazil: an overview. Malar J 9: 115.

  • 4.

    Taylor WRJ, Hanson J, Turner GDH, White NJ, Dondorp AM , 2012. Respiratory manifestations of malaria. Chest 142: 492505.

  • 5.

    Lacerda MVG et al.2012. Postmortem characterization of patients with clinical diagnosis of Plasmodium vivax malaria: to what extent does this parasite kill? Clin Infect Dis 55: 6774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Val F, Machado K, Barbosa L, Salinas JL, Siqueira AM, Alecrim MGC, Del Portillo H, Bassat Q, Monteiro WM, Lacerda MVG , 2017. Respiratory complications of Plasmodium vivax malaria: systematic review and meta-analysis. Am J Trop Med Hyg 97: 733743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Pugliese CM et al.2022. Point-of-care ultrasound to assess volume status and pulmonary oedema in malaria patients. Infection. 50: 65–82

  • 8.

    Leopold SJ et al.2018. Point-of-care lung ultrasound for the detection of pulmonary manifestations of malaria and sepsis: an observational study. PLOS ONE 13: 114.

    • Search Google Scholar
    • Export Citation
  • 9.

    Wegener A et al.2021. Cardiopulmonary alterations by ultrasound in a patient with uncomplicated mixed malaria infection: a case report from the Amazon Basin. Malar J 20: 14.

    • Search Google Scholar
    • Export Citation
  • 10.

    Picano E, Pellikka PA , 2016. Ultrasound of extravascular lung water: a new standard for pulmonary congestion. Eur Heart J 37: 20972104.

  • 11.

    Deeb M, Barbic S, Featherstone R, Dankoff J, Barbic D , 2014. Point-of-care ultrasonography for the diagnosis of acute cardiogenic pulmonary edema in patients presenting with acute dyspnea: a systematic review and meta-analysis. Acad Emerg Med 21: 844852.

    • Search Google Scholar
    • Export Citation
  • 12.

    Price S et al.2017. Expert consensus document: echocardiography and lung ultrasonography for the assessment and management of acute heart failure. Nat Rev Cardiol 14: 427440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Anon., Instituto Brasileiro de Geografia e Estatística Cruzeiro do Sul. Portal do Gov. Bras. Cid., 2017. Available at: https://cidades.ibge.gov.br/brasil/ac/cruzeiro-do-sul/panorama. Accessed July 9, 2021.

  • 14.

    World Health Organization (WHO) , 2014. Severe malaria. Trop Med Int Health 19: 7131.

  • 15.

    Health Ministry of Brazil (Ministério da Saúde) , 2019. Guia de tratamento da malária no Brasil (English: Guide to treatment of malaria in Brazil). 1st edition, Secretaria de Vigilância em Saúde Departamento de Imunização e Doenças Transmissívies. Available at: http://www.saude.gov.br/saude-de-a-z/malaria

  • 16.

    Simionatto M, De Paula JP, Chaves MAF, Bortoloso M, Cicchetti D, Leonart MSS, Do Nascimento AJ , 2010. Manual and automated reticulocyte counts. Hematology 15: 406409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Platz E et al.2019. Expert consensus document: reporting checklist for quantification of pulmonary congestion by lung ultrasound in heart failure. Eur J Heart Fail 21: 844851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Dwyer KH et al.2018. Pulmonary congestion by lung ultrasound in ambulatory patients with heart failure with reduced or preserved ejection fraction and hypertension. J Card Fail 24: 219226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Platz E et al.2019. Lung ultrasound in acute heart failure: prevalence of pulmonary congestion and short- and long-term outcomes. JACC Heart Fail 7: 849858.

    • Search Google Scholar
    • Export Citation
  • 20.

    Lang RM et al.2015. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16: 233271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Brainin P et al.2020. Body mass index and B-lines on lung ultrasonography in chronic and acute heart failure. ESC Heart Fail 7: 12011209.

  • 22.

    Van den Steen PE, Deroost K, Deckers J, Van Herck E, Struyf S, Opdenakker G , 2013. Pathogenesis of malaria-associated acute respiratory distress syndrome. Trends Parasitol 29: 346358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Anstey NM, Handojo T, Pain MCF, Kenangalem E, Tjitra E, Price RN, Maguire GP , 2007. Lung injury in vivax malaria: pathophysiological evidence for pulmonary vascular sequestration and posttreatment alveolar-capillary inflammation. J Infect Dis 195: 589596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Carvalho BO et al.2010. On the cytoadhesion of Plasmodium vivax-infected erythrocytes. J Infect Dis 202: 638647.

  • 25.

    Hemmer CJ, Holst FGE, Kern P, Chiwakata CB, Dietrich M, Reisinger EC , 2006. Stronger host response per parasitized erythrocyte in Plasmodium vivax or ovale than in Plasmodium falciparum malaria. Trop Med Int Health 11: 817823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Anstey NM, Jacups SP, Cain T, Pearson T, Ziesing PJ, Fisher DA, Currie BJ, Marks PJ , 2002. Pulmonary manifestations of uncomplicated falciparum and vivax malaria: Cough, small airways obstruction, impaired gas transfer, and increased pulmonary phagocytic activity. J Infect Dis 185: 13261334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Hanson J et al.2013. The reliability of the physical examination to guide fluid therapy in adults with severe falciparum malaria: an observational study. Malar J 12: 1.

    • Search Google Scholar
    • Export Citation
  • 28.

    Pivetta E et al.2021. Lung ultrasonography for the diagnosis of SARS-CoV-2 pneumonia in the emergency department. Ann Emerg Med 77: 385394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Staub LJ, Mazzali Biscaro RR, Kaszubowski E, Maurici R , 2019. Lung ultrasound for the emergency diagnosis of pneumonia, acute heart failure, and exacerbations of chronic obstructive pulmonary disease/asthma in adults: a systematic review and meta-analysis. J Emerg Med 56: 5369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Vitturi N, Dugo M, Soattin M, Simoni F, Maresca L, Zagatti R, Maresca MC , 2014. Lung ultrasound during hemodialysis: the role in the assessment of volume status. Int Urol Nephrol 46: 169174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Platz E, Merz AA, Jhund PS, Vazir A, Campbell R, McMurray JJ , 2017. Dynamic changes and prognostic value of pulmonary congestion by lung ultrasound in acute and chronic heart failure: a systematic review. Eur J Heart Fail 19: 11541163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Volpicelli G et al.2012. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med 38: 577591.

  • 33.

    Platz E et al.2016. Detection and prognostic value of pulmonary congestion by lung ultrasound in ambulatory heart failure patients. Eur Heart J 37: 12441251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Miglioranza MH et al.2013. Lung ultrasound for the evaluation of pulmonary congestion in outpatients: a comparison with clinical assessment, natriuretic peptides, and echocardiography. JACC Cardiovasc Imaging 6: 11411151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Dev N, Gadpayle AK, Sankar J, Choudhary M , 2014. An unusual case of heart failure due to Plasmodium vivax infection with a favorable outcome. Rev Soc Bras Med Trop 47: 663665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Sonambekar AA, Gupta N, Agarwal MP, Rajpal S, Aggarwal A, 2014. Plasmodium vivax-associated myopericarditis.

  • 37.

    Holm AE, Gomes LC, Marinho CRF, Silvestre OM, Vestergaard LS, Biering-Sørensen T & Brainin P. Prevalence of cardiovascular complications in malaria: a systematic review and meta-analysis. Am J Trop Med Hyg.

    • Search Google Scholar
    • Export Citation
  • 38.

    Gustafsson M, Alehagen U, Johansson P , 2015. Imaging congestion with a pocket ultrasound device: prognostic implications in patients with chronic heart failure. J Card Fail 21: 548554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

     Grobusch M, Kremsner P, 2005. Uncomplicated malaria. In: Compans R.W. et al. (eds) Malaria: Drugs, Disease and Postgenomic Biology. Current Topics in Microbiology and Immunology, vol 295. Springer, Berlin, Heidelberg: 83--104.

  • 40.

    Stang A , 2020. Lung ultrasound findings in COVID-19 pneumonia. Dtsch Arztebl Int 117: 335.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Prevalence and Dynamic Changes in Lung Ultrasound Findings among Adults with Uncomplicated Malaria and Controls in the Amazon Basin, Brazil

View More View Less
  • 1 Multidisciplinary Center, Federal University of Acre, Câmpus Floresta, Cruzeiro do Sul, Acre, Brazil;
  • | 2 Department of Cardiology, Gentofte Hospital, Hellerup, Denmark;
  • | 3 Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil;
  • | 4 Department of Immunology and Microbiology, Copenhagen University, Copenhagen, Denmark;
  • | 5 Department of Infectious Diseases, Rigshospitalet, Copenhagen University, Copenhagen, Denmark;
  • | 6 Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil;
  • | 7 Universidade do Estado do Amazonas, Manaus, Brazil;
  • | 8 Instituto Leônidas and Maria Deane, Fiocruz Amazonas, Manaus, Brazil;
  • | 9 National Malaria Reference Laboratory, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark;
  • | 10 Cardiovascular Division, Brigham and Women’s Hospital, Boston, Massachusetts;
  • | 11 Faculty of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark;
  • | 12 Health and Sport Science Center, Federal University of Acre, Rio Branco, Acre, Brazil
Restricted access

ABSTRACT.

Malaria patients are at risk of cardiopulmonary complications but diagnosis and management can be difficult in resource-limited settings. B-lines on lung ultrasound (LUS) mark changes in lung density; however, little is known about their role in malaria. We aimed to examine the prevalence of B-lines in adults with malaria at baseline and follow-up compared with controls in the Amazon Basin. We also examined the relationship between B-lines and left ventricular ejection fraction. We performed eight-zone LUS, echocardiography, and blood smears in 94 adults (mean age 40 years, 54% men) with uncomplicated malaria and 449 controls without heart failure, renal insufficiency or lung disease (mean age 41 years, 38% men). Examinations of adults with malaria were repeated after antimalarial treatment, corresponding to a median of 30 days (interquartile range [IQR] 27–39). Adults with malaria suffered from Plasmodium vivax (N = 70, median 2,823 [IQR 598–7,698] parasites/μL) or P. falciparum (N = 24, median 1,148 [IQR 480–3,128] parasites/μL). At baseline, adults with malaria more frequently had ≥ 3 B-lines (summed across eight zones) compared with controls (30% versus 2%, P value < 0.001), indicating higher lung density. When examinations were repeated, only 6% of adults with malaria had ≥ 3 B-lines at follow-up, which was significant lower compared with baseline (median reduction 3 B-lines; P value < 0.001). B-lines were not significantly associated with left ventricular ejection fraction in adults with malaria. In conclusion, B-lines detected by LUS were more frequent in adults with uncomplicated malaria compared with controls and decreased after completed antimalarial treatment.

    • Supplemental Materials (PDF 201 KB)

Author Notes

Address correspondence to Alma Wegener, Department of Cardiology, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark. E-mail: almaswegener@gmail.com

Financial support: Funding specifically rewarded for the Malaria Heart Study: PB and AEH: Jette and Hans Henrik Jensen, The Independent Research Fund Denmark (0129-0003B), Dansk Medicinsk Selskab København (120620-kms), Julie von Müllens Fond, Knud Højgaards Fond (18-05-2487), A. P. Møllers Lægefond (18-L-0026), Reinholdt W. Jorck og Hustrus Fond (18-JU-0485), Eva og Henry Frænkels Mindefond (NLA-080919), Astra Zeneca/Danish Society of Cardiology, Internal Funds at Herlev-Gentofte Hospital, Torben og Alice Frimodts Fond (TA250419), Brorsons Fond (12038-1-hh), Lundbeck Foundation (R373-2021-1201). AW: Danish Heart Association (20-R139-A9644-22165), William Demant (20-1257), Knud Højgaards Fond (20-01-1076), Reinholdt W. Jorck og Hustrus Fond (20-JU-0145). MK: Novo Nordisk Fonden (NNF20OC0062782). LCG: CNPq (142306/2020-7). Other sources of funding: CRFM: FAPESP (2020/06747-4) and CNPq (302917/2019-5). No sponsors had any role in the design, conduction, or analysis of the study.

Disclosure: Dr. Platz’s employer has received support from Novartis for consulting work and she has consulted for scPharmaceuticals outside of the submitted work. She has received research support from the NIH (R01HL148439).

Authors’ addresses: Alma Wegener, Anna E. Holm, Molly Dam Kaagaard, and Philip Brainin, Multidisciplinary Center, Federal University of Acre, Câmpus Floresta, Cruzeiro do Sul, Acre, Brazil; Department of Cardiology, Gentofte Hospital, Hellerup, Denmark, E-mails: almaswegener@gmail.com, annaengellholm@gmail.com, mollykaagaard@gmail.com, and denlillefilur@hotmail.com. Laura C. Gomes and Claudio Romero Farias Marinho, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil, E-mails: lauracg.gomes@gmail.com and crfmarinho@gmail.com. Karine O. Lima, Luan O. Matos, Isabelle V. M. Vieira, and Rodrigo Medeiros de Souza, Multidisciplinary Center, Federal University of Acre, Câmpus Floresta, Cruzeiro do Sul, Acre, Brazil, E-mails: kaoliveira2001@hotmail.com, matosluan2020@gmail.com, bellmnb675@gmail.com, and rodrigo.souza@ufac.br. Lars Hviid, Department of Immunology and Microbiology, Copenhagen University, Copenhagen, Denmark, and Department of Infectious Diseases, Rigshospitalet, Copenhagen University, Copenhagen, Denmark, E-mail: lhviid@sund.ku.dk. Marcus Vinícius Guimarães Lacerda, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil, Universidade do Estado do Amazonas, Manaus, Brazil, and Instituto Leônidas and Maria Deane, Fiocruz Amazonas, Manaus, Brazil, E-mail: marcuslacerda.br@gmail.com. Lasse S. Vestergaard, National Malaria Reference Laboratory, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark, E-mail: lav@ssi.dk. Elke Platz, Cardiovascular Division, Brigham and Women’s Hospital, Boston, MA, E-mail: eplatz@bwh.harvard.edu. Tor Biering-Sørensen, Department of Cardiology, Gentofte Hospital, Hellerup, Denmark, and Faculty of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark, E-mail: tor.biering@gmail.com. Odilson M. Silvestre, Health and Sport Science Center, Federal University of Acre, Rio Branco, Acre, Brazil, E-mail: odilsonms@gmail.com.

Save