• 1.

    Gubler DJ, 2011. Dengue, urbanization and globalization: the unholy trinity of the 21st century. Trop Med Health 39 (Suppl): S3S11.

  • 2.

    Guzman MG, Gubler DJ, Izquierdo A, Martinez E, Halstead SB, 2016. Dengue infection. Nat Rev Dis Primers 2: 125.

  • 3.

    Halstead SB, Nimmannitya S, Cohen SN, 1970. Observations related to pathogenesis of dengue hemorrhagic fever. IV. Relation of disease severity to antibody response and virus recovered. Yale J Biol Med 42: 311328.

    • Search Google Scholar
    • Export Citation
  • 4.

    Naghavi M et al., 2017. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390: 11511210.

    • Search Google Scholar
    • Export Citation
  • 5.

    PAHO , 2020. Epidemiological Update Dengue. Pan American Health Organization. Available at: https://www.paho.org/hq/index.php?option=com_docman&view= download&category_slug=dengue-2217&alias=51690-7-february-2020-dengue-epidemiological-update-1&Itemid=270&lang=en. Accessed July 23, 2020.

  • 6.

    WHO , 2020. Dengue and Severe Dengue. Geneva, Switzerland: World Health Organization. Available at: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue. Accessed July 23, 2020.

  • 7.

    Undurraga EA et al., 2015. Economic and disease burden of dengue in Mexico. PLoS Negl Trop Dis 9: e0003547.

  • 8.

    WHO , 2009. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. Geneva, Switzerland: World Health Organization. Available at: https://apps.who.int/iris/bitstream/handle/10665/44188/9789241547 871_eng.pdf?sequence=1&isAllowed=y. Accessed March 23, 2021.

  • 9.

    Dletz VJ, Gubler DJ, Rigau-Pérez JG, Pinheiro F, Schatzmayr HG, Bailey R, Gunn RA, 1990. Epidemic dengue 1 in Brazil, 1986: evaluation of a clinically based dengue surveillance system. Am J Epidemiol 131: 693701.

    • Search Google Scholar
    • Export Citation
  • 10.

    Rodrigues MBP, Freire HBM, Corrêa PRL, Mendonça ML, Silva MRI, França EB, 2005. Is it possible to identify dengue in children on the basis of Ministry of Health criteria for suspected dengue cases? J Pediatr (Rio J) 81: 209215.

    • Search Google Scholar
    • Export Citation
  • 11.

    Juárez JS, Soto PP, Bernuy GM, Alejo E, Valdivia MG, Cosser J, Vargas JH, 2005. Evaluación de la definición de caso probable de dengue clásico durante el brote de dengue en Lima, 2005. Rev Peru Med Exp Salud Publica 22: 205211.

    • Search Google Scholar
    • Export Citation
  • 12.

    Gutiérrez G, Gresh L, Pérez , Elizondo D, Avilés W, Kuan G, Balmaseda Á, Harris E, 2013. Evaluation of the diagnostic utility of the traditional and revised WHO dengue case definitions. PLoS Negl Trop Dis 7: e2385.

    • Search Google Scholar
    • Export Citation
  • 13.

    Martínez RA, Díaz FA, Villar LA, 2005. Evaluación de la definición clínica de dengue sugerida por la Organización Mundial de la Salud. Biomédica 25: 412--416. https://doi.org/10.7705/biomedica.v25i3.1365.

    • Search Google Scholar
    • Export Citation
  • 14.

    Nujum ZT, Thomas A, Vijayakumar K, Nair RR, Pillai MR, Indu PS, Sundar S, Gopakumar S, Mohan D, Sudheeshkumar TK, 2014. Comparative performance of the probable case definitions of dengue by WHO (2009) and the WHO-SEAR expert group (2011). Pathog Glob Health 108: 103110.

    • Search Google Scholar
    • Export Citation
  • 15.

    Pinto RC, De Castro DB, De Albuquerque BC, Sampaio VDS, Dos Passos RA, Da Costa CF, Sadahiro M, Braga JU, 2016. Mortality predictors in patients with severe dengue in the state of Amazonas, Brazil. PLOS ONE 11: e0161884.

    • Search Google Scholar
    • Export Citation
  • 16.

    Moraes GH, Duarte EDF, Duarte EC, 2013. Determinants of mortality from severe dengue in Brazil: a population-based case-control study. Am J Trop Med Hyg 88: 670676.

    • Search Google Scholar
    • Export Citation
  • 17.

    Rigau-Perez JG, Laufer MK, 2016. Dengue-related deaths in Puerto Rico, 1992–1996: diagnosis and clinical alarm signals. Clin Infect Dis 42: 12411246.

    • Search Google Scholar
    • Export Citation
  • 18.

    Nunes PCG, Daumas RP, Sánchez-Arcila JC, Nogueira RMR, Horta MAP, Dos Santos FB, 2019. 30 years of fatal dengue cases in Brazil: a review. BMC Public Health 19: 111.

    • Search Google Scholar
    • Export Citation
  • 19.

    Dantés HG, Farfán-Ale JA, Sarti E, 2014. Epidemiological trends of dengue disease in Mexico (2000–2011): a systematic literature search and analysis. PLoS Negl Trop Dis 8: e3158.

    • Search Google Scholar
    • Export Citation
  • 20.

    Gaxiola-Robles R, Celis A, Serrano-Pinto V, De Orozco-Valerio MJ, Zenteno-Savín T, 2012. Mortality trend by dengue in Mexico 1980 to 2009. Rev Invest Clin 64: 444451.

    • Search Google Scholar
    • Export Citation
  • 21.

    Betanzos-Reyes ÁF, Rodríguez MH, Romero-Martínez M, Sesma-Medrano E, Rangel-Flores H, Santos-Luna R, 2018. Association of dengue fever with Aedes spp. abundance and climatological effects. Salud Publica Mex 60: 1220.

    • Search Google Scholar
    • Export Citation
  • 22.

    Hair GME, Nobre FF, Brasil P, 2019. Characterization of clinical patterns of dengue patients using an unsupervised machine learning approach. BMC Infect Dis 19 : 649.

    • Search Google Scholar
    • Export Citation
  • 23.

    Sangkaew S, Tan LK, Ng LC, Ferguson NM, Dorigatti I, 2020. Using cluster analysis to reconstruct dengue exposure patterns from cross-sectional serological studies in Singapore. Parasit Vectors 13: 110.

    • Search Google Scholar
    • Export Citation
  • 24.

    Alibuhtto MC, Mahat NI, 2018. Applications of partition-based algorithms for clustering dengue patients in Sri Lanka. Int J Adv Sci Res Eng Trends 3: 2731.

    • Search Google Scholar
    • Export Citation
  • 25.

    Shaukat K, Masood N, Shafaat AB, Jabbar K, Shabbir H, Shabbir S, 2015. Dengue fever in perspective of clustering algorithms. J Data Mining Genomics Proteomics 6: 1--5.

  • 26.

    GPC , 2016. Clasificación, Diagnóstico y Tratamiento Integral del Dengue. Resumen de Evidencias y Recomendaciones. Guía de práctica clínica, México, Secretaría de Salud de México. Available at: http://www.cenetec.salud.gob.mx/descargas/gpc/CatalogoMaestro/ 151_GPC_DENGUE/SSA_151_08_EyR_Dengue_170310.pdf. Accessed July 27, 2020.

  • 27.

    CONAPO , 2021. Proyecciones de la Población de México y de las Entidades Federativas, 2016–2050. Consejo Nacional de Población. Available at: https://datos.gob.mx/busca/ dataset/proyecciones-de-la-poblacion-de-mexico-y-de-las-entidades-federativas-2016-2050. Accessed March 18, 2021.

  • 28.

    Charrad M, Ghazzali N, Boiteau V, Niknafs A, 2014. Nbclust : an R package for determining the relevant number of clusters in a data set. J Stat Softw 61: 1--11. https://doi.org/10.18637/jss.v061.i06.

    • Search Google Scholar
    • Export Citation
  • 29.

    Reynolds AP, Richards G, De La Iglesia B, Rayward-Smith VJ, 2006. Clustering rules: a comparison of partitioning and hierarchical clustering algorithms. J Math Model Algorithms 5: 475504.

    • Search Google Scholar
    • Export Citation
  • 30.

    Cigarroa-Toledo N et al., 2016. Chikungunya virus in febrile humans and Aedes aegypti mosquitoes, Yucatan, Mexico. Emerg Infect Dis 22: 18041807.

    • Search Google Scholar
    • Export Citation
  • 31.

    Guerbois M et al., 2016. Outbreak of Zika virus infection, Chiapas State, Mexico, 2015, and first confirmed transmission by Aedes aegypti mosquitoes in the Americas. J Infect Dis 214: 13491356.

    • Search Google Scholar
    • Export Citation
  • 32.

    Puntasecca CJ, King CH, LaBeaud AD, 2021. Measuring the global burden of chikungunya and Zika viruses: a systematic review. PLoS Negl Trop Dis 15: e0009055.

    • Search Google Scholar
    • Export Citation
  • 33.

    Weaver SC, Charlier C, Vasilakis N, Lecuit M, 2018. Zika, chikungunya, and other emerging vector-borne viral diseases. Annu Rev Med 69: 395408.

  • 34.

    Loroño Pino MA, Farfán Ale JA, Rosado Paredes EP, Kuno G, Gubler DJ, 1993. Epidemic dengue 4 in the Yucatán, México, 1984. Rev Inst Med Trop São Paulo 35: 449455.

    • Search Google Scholar
    • Export Citation
  • 35.

    Beatty ME et al., 2010. Best practices in dengue surveillance: a report from the Asia-Pacific and Americas dengue prevention boards. PLoS Negl Trop Dis 4: e890.

    • Search Google Scholar
    • Export Citation
  • 36.

    Macías AE, Puentes-Rosas E, Velandia D, Morley D, Coudeville L, Baurin N, 2019. Real-world evidence of dengue burden on hospitals in Mexico: insights from the Automated Subsystem of Hospital Discharges (Saeh) database. Rev Invest Clin 71: 168177.

    • Search Google Scholar
    • Export Citation
  • 37.

    Sarti E, L’Azou M, Mercado M, Kuri P, Siqueira JB Jr, Solis E, Noriega F, Ochiai RL, 2016. A comparative study on active and passive epidemiological surveillance for dengue in five countries of Latin America. Int J Infect Dis 44: 4449.

    • Search Google Scholar
    • Export Citation
  • 38.

    Zavala-Castro JE, Dzul-Rosado KR, León JJA, Walker DH, Zavala-Velázquez JE, 2008. An increase in human cases of spotted fever rickettsiosis in Yucatan, Mexico, involving children. Am J Trop Med Hyg 79: 907910.

    • Search Google Scholar
    • Export Citation
  • 39.

    Phuong CXT, Nhan NT, Kneen R, Thuy PTT, Van Thien C, Nga NTT, Thuy TT, Solomon T, Stepniewska K, Wills B, 2004. Clinical diagnosis and assessment of severity of confirmed dengue infections in Vietnamese children: is the World Health Organization classification system helpful? Am J Trop Med Hyg 70: 172179.

    • Search Google Scholar
    • Export Citation
  • 40.

    Sawasdivorn S, Vibulvattanakit S, Sasavatpakdee M, Iamsirithavorn S, 2001. Efficacy of clinical diagnosis of dengue fever in paediatric age groups as determined by WHO case definition 1997 in Thailand. Dengue Bull 25: 5664.

    • Search Google Scholar
    • Export Citation
  • 41.

    Eligio-García L, Crisóstomo-Vázquez MP, Caballero-García ML, Soria-Guerrero M, Méndez-Galván JF, López-Cancino SA, Jiménez-Cardoso E, 2020. Co-infection of dengue, Zika and chikungunya in a group of pregnant women from Tuxtla Gutiérrez, Chiapas: preliminary data. 2019. PLoS Negl Trop Dis 14: e0008880.

    • Search Google Scholar
    • Export Citation
  • 42.

    Fatima K, Syed NI, 2018. Dengvaxia controversy: impact on vaccine hesitancy. J Glob Health 8: 020312.

  • 43.

    Amaya-Larios IY et al., 2014. Seroprevalence of neutralizing antibodies against dengue virus in two localities in the state of Morelos, Mexico. Am J Trop Med Hyg 91: 10571065.

    • Search Google Scholar
    • Export Citation
  • 44.

    Pavía-Ruz N, Rojas DP, Villanueva S, Granja P, Balam-May A, Longini IM, Halloran ME, Manrique-Saide P, Gómez-Dantés H, 2018. Seroprevalence of dengue antibodies in three urban settings in Yucatan, Mexico. Am J Trop Med Hyg 98: 12021208.

    • Search Google Scholar
    • Export Citation
  • 45.

    Dzul-Manzanilla F et al., 2021. Identifying urban hotspots of dengue, chikungunya, and Zika transmission in Mexico to support risk stratification efforts: a spatial analysis. Lancet Planet Health 5: e277e285.

    • Search Google Scholar
    • Export Citation
  • 46.

    Laureano-Rosario A, Duncan A, Mendez-Lazaro P, Garcia-Rejon J, Gomez-Carro S, Farfan-Ale J, Savic D, Muller-Karger F, 2018. Application of artificial neural networks for dengue fever outbreak predictions in the northwest coast of Yucatan, Mexico and San Juan, Puerto Rico. Trop Med Infect Dis 3: 116.

    • Search Google Scholar
    • Export Citation
  • 47.

    Garcia-Rejon JE et al., 2008. Dengue virus-infected Aedes aegypti in the home environment. Am J Trop Med Hyg 79: 940950.

  • 48.

    Dávalos-Becerril E et al., 2019. Urban and semi-urban mosquitoes of Mexico City: a risk for endemic mosquito-borne disease transmission. PLOS ONE 14: e0212987.

    • Search Google Scholar
    • Export Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Cluster Analysis of Dengue Morbidity and Mortality in Mexico from 2007 to 2020: Implications for the Probable Case Definition

View More View Less
  • 1 Laboratorio de Arbovirología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi,” Universidad Autónoma de Yucatán, Mérida, Yucatán, México;
  • | 2 Laboratorio de Biología Celular, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi,” Universidad Autónoma de Yucatán, Mérida, Yucatán, México;
  • | 3 Laboratorio de Geografía Ambiental, Instituto de Investigación en Gestión de Riesgos y Cambio Climático, Universidad de Ciencias y Artes de Chiapas, México;
  • | 4 Laboratorio de Enfermedades Tropicales y Transmitidas por Vector, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México;
  • | 5 Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
Restricted access

ABSTRACT.

Dengue cases and deaths occur frequently in Mexico, although the trend is not uniform across the country. We performed a Spatio-temporal analysis of dengue cases and deaths in Mexico from 2007 to 2020, and clustered states according to whether there was a low, moderate, or high risk of dengue. A total of 501,600 confirmed dengue cases were registered from 2007 to 2020, with 378,122 cases classified as dengue fever (DF) and 123,478 cases classified as dengue hemorrhagic fever (DHF). For each confirmed case, there were 4.68 probable cases. There were 1,230 dengue deaths, with highest numbers reported in 2009, 2012, 2013, and 2019. The number of deaths had a significant correlation (P ≤ 0.01) with DF (r = 0.82), DHF (r = 0.94), and probable dengue cases (r = 0.84). States were clustered using Machine Learning technique according to select indices associated with dengue. Cluster 1 (low risk) primarily contained states in the northwest, northcentral, and east. Cluster 2 (moderate risk) includes states in the northeast. Cluster 3 (high risk) mostly contained coastal states in the southeast, southwest, and west. The generation of the clusters was supported by the Kruskal–Wallis test. A significant difference was found in the incidence, mortality rates, and case-fatality rates of dengue among the clusters (P ≤ 0.01). Notably, cluster 3 contributed 71.4% of the confirmed cases and 89.2% of the deaths. Public health and vector control strategies designed to mitigate the burden of dengue in Mexico should consider the states in cluster 3 as high priority areas.

    • Supplemental Materials (PDF 161 KB)

Author Notes

Address correspondence to Julian E Garcia-Rejon, Laboratorio de Arbovirología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi,” Universidad Autónoma de Yucatán. Calle 43 No. 613 × Calle 96, CP 97225, Colonia Inalámbrica, Mérida, Yucatán, México. E-mail: julian.garcia@correo.uady.mx

Authors’ addresses: Carlos M. Baak-Baak, Rosa C. Cetina-Trejo, and Julian E. Garcia-Rejon, Laboratorio de Arbovirología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi,” Universidad Autónoma de Yucatán, Mérida, Yucatán, México, E-mails: carlos.baak@correo.uady.mx, rosa.cetina@correo.uady.mx, and julian.garcia@correo.uady.mx. Nohemi Cigarroa-Toledo, Laboratorio de Biología Celular, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi,” Universidad Autónoma de Yucatán, Mérida, Yucatán, México, E-mail: nohemi.cigarroa@correo.uady.mx. Jose F. Pinto-Castillo, Laboratorio de Geografía Ambiental, Instituto de Investigación en Gestión de Riesgos y Cambio Climático, Universidad de Ciencias y Artes de Chiapas, México, E-mail: jose.pinto@unicach.mx. Oswaldo Torres-Chable, Laboratorio de Enfermedades Tropicales y Transmitidas por Vector, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México, E-mail: oswaldo.torres@ujat.mx. Bradley J. Blitvich, Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, E-mail: blitvich@iastate.edu.

Save