World Health Organization , 2016. Global Tuberculosis Report 2016. Geneva, Switzerland: WHO.
Hunter RL , 2011. Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis (Edinb) 91: 497–509.
McCullough AE, Leslie KO, 2018. Lung infections. Leslie KO, Wick MR, eds. Practical Pulmonary Pathology: A Diagnostic Approach (Third Edition). Elsevier, 147--226.e5. Available at: https://doi.org/10.1016/B978-0-323-44284-8.00007-7.
Ankrah AO , van der Werf TS , de Vries EF , Dierckx RA , Sathekge MM , Glaudemans AW , 2016. PET/CT imaging of Mycobacterium tuberculosis infection. Clin Transl Imaging 4: 131–144.
Anzola LK , Glaudemans AWJM , Dierckx RAJO , Martinez FA , Moreno S , Signore A , 2019. Somatostatin receptor imaging by SPECT and PET in patients with chronic inflammatory disorders: a systematic review. Eur J Nucl Med Mol Imaging 46: 2496–2513.
Naftalin CM , Leek F , Hallinan JTPD , Khor LK , Totman JJ , Wang J , Wang YT , Paton NI , 2020. Comparison of 68Ga-DOTANOC with 18F-FDG using PET/MRI imaging in patients with pulmonary tuberculosis. Sci Rep 10: 14236.
Cardona PJ , 2018. Pathogenesis of tuberculosis and other mycobacteriosis. Enferm Infecc Microbiol Clin 36: 38–46.
Lawn SD , Zumla AI , 2011. Tuberculosis. Lancet 378: 57–72.
Munden RF et al.2018. Managing incidental findings on thoracic CT: mediastinal and cardiovascular findings. A white paper of the ACR incidental findings committee. J Am Coll Radiol 15: 1087–1096.
Azmi NHM , Suppiah S , Liong CW , Noor NM , Said SM , Hanafi MH , Kaewput C , Saad FFA , Vinjamuri S , 2018. Reliability of standardized uptake value normalized to lean body mass using the liver as a reference organ, in contrast-enhanced 18F-FDG PET/CT imaging. Radiat Phys Chem 147: 35–39.
Coura-Filho GB , Hoff AAFO , Duarte PS , Buchpiguel CA , Josefsson A , Hobbs RF , Sgouros G , Sapienza MT , 2019. 68Ga-DOTATATE PET: temporal variation of maximum standardized uptake value in normal tissues and neuroendocrine tumours. Nucl Med Commun 40: 920–926.
Duan XY , Wang W , Li M , Li Y , Guo YM , 2015. Predictive significance of standardized uptake value parameters of FDG-PET in patients with non-small cell lung carcinoma. Braz J Med Biol Res 48: 267–272.
Lee R , Kim J , Paeng JC , Byun JW , Cheon GJ , Lee DS , Chung JK , Kang KW , 2018. Measurement of 68Ga-DOTATOC uptake in the thoracic aorta and its correlation with cardiovascular risk. Nucl Med Mol Imaging 52: 279–286.
Tarkin JM et al.2017. Detection of atherosclerotic inflammation by. J Am Coll Cardiol 69: 1774–1791.
Giesel FL , Schneider F , Kratochwil C , Rath D , Moltz J , Holland-Letz T , Kauczor HU , Schwartz LH , Haberkorn U , Flechsig P , 2017. Correlation between SUVmax and CT radiomic analysis using lymph node density in PET/CT-based lymph node staging. J Nucl Med 58: 282–287.
Soussan M , Brillet PY , Mekinian A , Khafagy A , Nicolas P , Vessieres A , Brauner M , 2012. Patterns of pulmonary tuberculosis on FDG-PET/CT. Eur J Radiol 81: 2872–2876.
Ghesani N , Patrawalla A , Lardizabal A , Salgame P , Fennelly KP , 2014. Increased cellular activity in thoracic lymph nodes in early human latent tuberculosis infection. Am J Respir Crit Care Med 189: 748–750.
Ganchua SKC , White AG , Klein EC , Flynn JL , 2020. Lymph nodes-the neglected battlefield in tuberculosis. PLoS Pathog 16: e1008632.
Armani C , Catalani E , Balbarini A , Bagnoli P , Cervia D , 2007. Expression, pharmacology, and functional role of somatostatin receptor subtypes 1 and 2 in human macrophages. J Leukoc Biol 81: 845–855.
Borchert T , Beitar L , Langer LBN , Polyak A , Wester HJ , Ross TL , Hilfiker-Kleiner D , Bengel FM , Thackeray JT , 2021. Dissecting the target leukocyte subpopulations of clinically relevant inflammation radiopharmaceuticals. J Nucl Cardiol 28: 1636–1645.
More S , Marakalala MJ , Sathekge M , 2021. Tuberculosis: role of nuclear medicine and molecular imaging with potential impact of neutrophil-specific tracers. Front Med (Lausanne) 8: 758636.
Belton M et al.2016. Hypoxia and tissue destruction in pulmonary TB. Thorax 71: 1145–1153.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1852 | 696 | 26 |
Full Text Views | 131 | 12 | 0 |
PDF Downloads | 110 | 13 | 0 |
Tuberculosis (TB) remains one of the world’s leading infectious cause of morbidity and mortality. Positron emission tomography (PET) associated with computed tomography (CT) allows a structural and metabolic evaluation of TB lesions, being an excellent noninvasive alternative for understanding its pathogenesis. DOTATOC labeled with gallium-68 (68Ga-DOTATOC) can bind to somatostatin receptors present in activated macrophages and lymphocytes, cells with a fundamental role in TB pathogenesis. We describe 68Ga-DOTATOC uptake distribution and patterns in thoracic lymph nodes (LN) and pulmonary lesions (PL) in immunocompetent patients with active postprimary TB, analyze the relative LN/PL uptake, and compare this two tracer’s uptake. High uptake of both radiotracers in PL and LN was demonstrated, with higher LN/PL ratio on 68Ga-DOTATOC (P < 0.05). Considering that LN in immunocompetent patients are poorly studied, 68Ga-DOTATOC can contribute to the understanding of the complex immunopathogenesis of TB.
Financial support: This work was supported by the Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ) (Grant nos. E-26/202.751/2018, E-26/202.785/2017, E-26/203.001/2018, E-26/203.279/2017, and E-26/211.867/2016) and the Brazilian National Council for Scientific and Technological Development (CNPq) (Grant nos. 302839/2017-8 and 312410/2017-4).
Authors’ addresses: Paulo Henrique Rosado-de-Castro, D’Or Institute for Research and Education, Botafogo, Rio de Janeiro, Brazil, Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, and Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, E-mail: paulo.rosado@idor.org. Thiago Pereira-de-Carvalho, Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, and Petrópolis School of Medicine/Arthur Sá Earp Neto Faculty, Petrópolis, Brazil, E-mail: thiago@carvalho.it. Miriam Menna Barreto, Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, E-mail: miriam.menna@gmail.com. Afrânio Lineu Kritski, Academic Tuberculosis Program, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, E-mail: kritskia@gmail.com. Rebecca de Oliveira Souza, Department of Statistical Methods, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, E-mail: rebecca@dme.ufrj.br. Sergio Altino de Almeida, D’Or Institute for Research and Education, Botafogo, Rio de Janeiro, Brazil, E-mail: altino.sergio@gmail.com. Valeria Cavalcanti Rolla, Clinical Research Laboratory on Mycobacteria, Evandro Chagas National Institute of Infectious Diseases, Fiocruz, Rio de Janeiro, Brazil, E-mail: valeria.rolla@ini.fiocruz.br. Walter Araujo Zin, Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, E-mail: wazin@biof.ufrj.br. Alysson Roncally Silva Carvalho, Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, Cardiovascular R&D Centre (UnIC), Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal, and Laboratory of Pulmonary Engineering, Biomedical Engineering Program, Alberto Luiz Coimbra Institute of Post-Graduation and Research in Engineering, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, E-mail: acarvalho@biof.ufrj.br. Rosana Souza Rodrigues, D’Or Institute for Research and Education, Botafogo, Rio de Janeiro, Brazil, and Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, E-mail: rosana.rodrigues@idor.org.
World Health Organization , 2016. Global Tuberculosis Report 2016. Geneva, Switzerland: WHO.
Hunter RL , 2011. Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis (Edinb) 91: 497–509.
McCullough AE, Leslie KO, 2018. Lung infections. Leslie KO, Wick MR, eds. Practical Pulmonary Pathology: A Diagnostic Approach (Third Edition). Elsevier, 147--226.e5. Available at: https://doi.org/10.1016/B978-0-323-44284-8.00007-7.
Ankrah AO , van der Werf TS , de Vries EF , Dierckx RA , Sathekge MM , Glaudemans AW , 2016. PET/CT imaging of Mycobacterium tuberculosis infection. Clin Transl Imaging 4: 131–144.
Anzola LK , Glaudemans AWJM , Dierckx RAJO , Martinez FA , Moreno S , Signore A , 2019. Somatostatin receptor imaging by SPECT and PET in patients with chronic inflammatory disorders: a systematic review. Eur J Nucl Med Mol Imaging 46: 2496–2513.
Naftalin CM , Leek F , Hallinan JTPD , Khor LK , Totman JJ , Wang J , Wang YT , Paton NI , 2020. Comparison of 68Ga-DOTANOC with 18F-FDG using PET/MRI imaging in patients with pulmonary tuberculosis. Sci Rep 10: 14236.
Cardona PJ , 2018. Pathogenesis of tuberculosis and other mycobacteriosis. Enferm Infecc Microbiol Clin 36: 38–46.
Lawn SD , Zumla AI , 2011. Tuberculosis. Lancet 378: 57–72.
Munden RF et al.2018. Managing incidental findings on thoracic CT: mediastinal and cardiovascular findings. A white paper of the ACR incidental findings committee. J Am Coll Radiol 15: 1087–1096.
Azmi NHM , Suppiah S , Liong CW , Noor NM , Said SM , Hanafi MH , Kaewput C , Saad FFA , Vinjamuri S , 2018. Reliability of standardized uptake value normalized to lean body mass using the liver as a reference organ, in contrast-enhanced 18F-FDG PET/CT imaging. Radiat Phys Chem 147: 35–39.
Coura-Filho GB , Hoff AAFO , Duarte PS , Buchpiguel CA , Josefsson A , Hobbs RF , Sgouros G , Sapienza MT , 2019. 68Ga-DOTATATE PET: temporal variation of maximum standardized uptake value in normal tissues and neuroendocrine tumours. Nucl Med Commun 40: 920–926.
Duan XY , Wang W , Li M , Li Y , Guo YM , 2015. Predictive significance of standardized uptake value parameters of FDG-PET in patients with non-small cell lung carcinoma. Braz J Med Biol Res 48: 267–272.
Lee R , Kim J , Paeng JC , Byun JW , Cheon GJ , Lee DS , Chung JK , Kang KW , 2018. Measurement of 68Ga-DOTATOC uptake in the thoracic aorta and its correlation with cardiovascular risk. Nucl Med Mol Imaging 52: 279–286.
Tarkin JM et al.2017. Detection of atherosclerotic inflammation by. J Am Coll Cardiol 69: 1774–1791.
Giesel FL , Schneider F , Kratochwil C , Rath D , Moltz J , Holland-Letz T , Kauczor HU , Schwartz LH , Haberkorn U , Flechsig P , 2017. Correlation between SUVmax and CT radiomic analysis using lymph node density in PET/CT-based lymph node staging. J Nucl Med 58: 282–287.
Soussan M , Brillet PY , Mekinian A , Khafagy A , Nicolas P , Vessieres A , Brauner M , 2012. Patterns of pulmonary tuberculosis on FDG-PET/CT. Eur J Radiol 81: 2872–2876.
Ghesani N , Patrawalla A , Lardizabal A , Salgame P , Fennelly KP , 2014. Increased cellular activity in thoracic lymph nodes in early human latent tuberculosis infection. Am J Respir Crit Care Med 189: 748–750.
Ganchua SKC , White AG , Klein EC , Flynn JL , 2020. Lymph nodes-the neglected battlefield in tuberculosis. PLoS Pathog 16: e1008632.
Armani C , Catalani E , Balbarini A , Bagnoli P , Cervia D , 2007. Expression, pharmacology, and functional role of somatostatin receptor subtypes 1 and 2 in human macrophages. J Leukoc Biol 81: 845–855.
Borchert T , Beitar L , Langer LBN , Polyak A , Wester HJ , Ross TL , Hilfiker-Kleiner D , Bengel FM , Thackeray JT , 2021. Dissecting the target leukocyte subpopulations of clinically relevant inflammation radiopharmaceuticals. J Nucl Cardiol 28: 1636–1645.
More S , Marakalala MJ , Sathekge M , 2021. Tuberculosis: role of nuclear medicine and molecular imaging with potential impact of neutrophil-specific tracers. Front Med (Lausanne) 8: 758636.
Belton M et al.2016. Hypoxia and tissue destruction in pulmonary TB. Thorax 71: 1145–1153.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1852 | 696 | 26 |
Full Text Views | 131 | 12 | 0 |
PDF Downloads | 110 | 13 | 0 |