• 1.

    World Health Organization , 2021. Chagas Disease (American Trypanosomiasis). Available at: http://www.who.int/chagas/en/. Accessed March 10, 2021.

  • 2.

    Chagas C , 1909. Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz 1: 159218.

    • Search Google Scholar
    • Export Citation
  • 3.

    Galvão C , 2020. Taxonomia dos vetores da doença de Chagas da forma à molécula, quase três séculos de história. Oliveira J, Alevi KCC, Camargo LMA, Meneguetti DUO, eds. Atualidades em Medicina Tropical no Brasil: Vetores. Acre, Brasil: Editora Athenas, 9–37.

  • 4.

    Alevi KCC et al.2020. Triatoma rosai sp. nov. (Hemiptera, Triatominae): a new species of Argentinian Chagas disease vector described based on integrative taxonomy. Insects 11: 830.

    • Search Google Scholar
    • Export Citation
  • 5.

    Zhao Y, Galvão C, Cai W , 2021. Rhodnius micki, a new species of Triatominae (Hemiptera, Reduviidae) from Bolivia. ZooKeys 1012: 7193.

  • 6.

    Galvão C , 2014. Vetores da Doença de Chagas no Brasil. Brasil: Sociedade Brasileira de Zoologia.

  • 7.

    Mesquita RD et al.2015. Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc Natl Acad Sci USA 112: 1493614941.

    • Search Google Scholar
    • Export Citation
  • 8.

    Borsatto KC, Coronado MA, Arni RK, Alevi KCC , 2021. Omics tools applied to the study of Chagas disease vectors: cytogenomics and genomics. Am J Trop Med Hyg 104: 19731977.

    • Search Google Scholar
    • Export Citation
  • 9.

    Brito T, Julio A, Berni M, de Castro Poncio L, Bernardes ES, Araujo H, Sammeth M, Pane A , 2018. Transcriptomic and functional analyses of the piRNA pathway in the Chagas disease vector Rhodnius prolixus. PLoS Negl Trop Dis 12: 120.

    • Search Google Scholar
    • Export Citation
  • 10.

    Coelho VL, de Brito TF, de Abreu Brito IA, Cardoso MA, Berni MA, Araujo HMM, Sammeth M, Pane A , 2021. Analysis of ovarian transcriptomes reveals thousands of novel genes in the insect vector Rhodnius prolixus. Sci Rep 11: 117.

    • Search Google Scholar
    • Export Citation
  • 11.

    Leyria J, Orchard I, Lange AB , 2020. Transcriptomic analysis of regulatory pathways involved in female reproductive physiology of Rhodnius prolixus under different nutritional states. Sci Rep 10: 116.

    • Search Google Scholar
    • Export Citation
  • 12.

    Leyria J, Orchard I, Lange AB , 2020. What happens after a blood meal? A transcriptome analysis of the main tissues involved in egg production in Rhodnius prolixus, an insect vector of Chagas disease. PLoS Negl Trop Dis 14: e0008516.

    • Search Google Scholar
    • Export Citation
  • 13.

    Nevoa JC, Mendes MT, da Silva MV, Soares SC, Oliveira CJ, Ribeiro JM , 2018. An insight into the salivary gland and fat body transcriptome of Panstrongylus lignarius (Hemiptera: Heteroptera), the main vector of Chagas disease in Peru. PLoS Negl Trop Dis 12: e0006243.

    • Search Google Scholar
    • Export Citation
  • 14.

    Latorre-Estivalis JM, Robertson HM, Walden KK, Ruiz J, Gonçalves LO, Guarneri AA, Lorenzo MG , 2017. The molecular sensory machinery of a Chagas disease vector: expression changes through imaginal moult and sexually dimorphic features. Sci Rep 7: 116.

    • Search Google Scholar
    • Export Citation
  • 15.

    Carvalho DB, Congrains C, Chahad-Ehlers S, Pinotti H, De Brito RA, Da Rosa JA , 2017. Differential transcriptome analysis supports Rhodnius montenegrensis and Rhodnius robustus (Hemiptera, Reduviidae, Triatominae) as distinct species. PLoS One 12: e0174997.

    • Search Google Scholar
    • Export Citation
  • 16.

    Brito RN, Geraldo JA, Monteiro FA, Lazoski C, Souza RCM, Abad-Franch F , 2019. Transcriptome-based molecular systematics: Rhodnius montenegrensis (Triatominae) and its position within the Rhodnius prolixus–Rhodnius robustus cryptic–species complex. Parasit Vectors 12: 116.

    • Search Google Scholar
    • Export Citation
  • 17.

    Srivastava A, George J, Karuturi RKM , 2019. Transcriptome analysis. Encyclop Bioinf Comp Biol 3: 792--805.

  • 18.

    Ribeiro JMC, Andersen J, Silva-Neto MAC, Pham VM, Garfield MK, Valenzuela JG , 2004. Exploring the sialome of the blood-sucking bug Rhodnius prolixus. Insect Biochem Mol Biol 34: 6179.

    • Search Google Scholar
    • Export Citation
  • 19.

    Champagne DE, Nussenzveig RH, Ribeiro JM , 1995. Purification, partial characterization, and cloning of nitric oxide-carrying heme proteins (nitrophorins) from salivary glands of the blood-sucking insect Rhodnius prolixus. J Biol Chem 270: 86918695.

    • Search Google Scholar
    • Export Citation
  • 20.

    Noeske-Jungblut C, Haendler B, Donner P, Alagon A, Possani L, Schleuning WD , 1995. Triabin, a highly potent exosite inhibitor of thrombin. J Biol Chem 270: 2862928634.

    • Search Google Scholar
    • Export Citation
  • 21.

    Assumpção TC, Francischetti IM, Andersen JF, Schwarz A, Santana JM, Ribeiro JM , 2008. An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas’ disease. Insect Biochem Mol Biol 38: 213232.

    • Search Google Scholar
    • Export Citation
  • 22.

    Noeske-Jungblut C, Krätzschmar J, Haendler B, Alagon A, Possani L, Verhallen P, Donner P, Schleuning WD , 1994. An inhibitor of collagen-induced platelet aggregation from the saliva of Triatoma pallidipennis. J Biol Chem 269: 50505053.

    • Search Google Scholar
    • Export Citation
  • 23.

    Hernández-Vargas MJ, Gil J, Lozano L, Pedraza-Escalona M, Ortiz E, Encarnación-Guevara S, Alagón A, Corzo G , 2017. Proteomic and transcriptomic analysis of saliva components from the hematophagous reduviid Triatoma pallidipennis. J Proteomics 162: 3039.

    • Search Google Scholar
    • Export Citation
  • 24.

    Paddock CD, McKerrow JH, Hansell E, Foreman KW, Hsieh I, Marshall N , 2001. Identification, cloning, and recombinant expression of procalin, a major triatomine allergen. J Immunol 167: 26942699.

    • Search Google Scholar
    • Export Citation
  • 25.

    Santos A, Ribeiro JMC, Lehane MJ, Gontijo NF, Veloso AB, Sant’Anna MR, Araujo RN, Grisard EC, Pereira HM , 2007. The sialotranscriptome of the blood-sucking bug Triatoma brasiliensis (Hemiptera, Triatominae). Insect Biochem Mol Biol 37: 702712.

    • Search Google Scholar
    • Export Citation
  • 26.

    Kato H, Jochim RC, Gomez EA, Sakoda R, Iwata H, Valenzuela JG, Hashiguchi Y , 2010. A repertoire of the dominant transcripts from the salivary glands of the blood-sucking bug, Triatoma dimidiata, a vector of Chagas disease. Infect Genet Evol 10: 184191.

    • Search Google Scholar
    • Export Citation
  • 27.

    Bussacos AC, Nakayasu ES, Hecht MM, Parente JA, Soares CM, Teixeira AR, Almeida IC , 2011. Diversity of anti-haemostatic proteins in the salivary glands of Rhodnius species transmitters of Chagas disease in the greater Amazon. J Proteomics 74: 16641672.

    • Search Google Scholar
    • Export Citation
  • 28.

    Bussacos AC, Nakayasu ES, Hecht MM, Assumpção TC, Parente JA, Soares CM, Santana JM, Almeida IC, Teixeira AR , 2011. Redundancy of proteins in the salivary glands of Panstrongylus megistus secures prolonged procurement for blood meals. J Proteomics 74: 16931700 8.

    • Search Google Scholar
    • Export Citation
  • 29.

    Assumpçao TC, Eaton DP, Pham VM, Francischetti IM, Aoki V, Hans-Filho G, Rivitti EA, Valenzuela JG, Diaz LA, Ribeiro JM , 2012. An insight into the sialotranscriptome of Triatoma matogrossensis, a kissing bug associated with Fogo selvagem in South America. Am J Trop Med Hyg 86: 10051014.

    • Search Google Scholar
    • Export Citation
  • 30.

    Ribeiro JM, Assumpção TC, Van Pham M, Francischetti IM, Reisenman CE , 2012. An insight into the sialotranscriptome of Triatoma rubida (Hemiptera: Heteroptera). J Med Entomol 49: 563572.

    • Search Google Scholar
    • Export Citation
  • 31.

    Schwarz A, Medrano-Mercado N, Schaub GA, Struchiner CJ, Bargues MD, Levy MZ, Ribeiro JM , 2014. An updated insight into the sialotranscriptome of Triatoma infestans: developmental stage and geographic variations. PLoS Negl Trop Dis 8: e3372.

    • Search Google Scholar
    • Export Citation
  • 32.

    Ribeiro JM, Schwarz A, Francischetti IM , 2015. A deep insight into the sialotranscriptome of the Chagas disease vector, Panstrongylus megistus (Hemiptera: Heteroptera). J Med Entomol 52: 351358.

    • Search Google Scholar
    • Export Citation
  • 33.

    Santiago PB et al.2016. A deep insight into the sialome of Rhodnius neglectus, a vector of Chagas disease. PLoS Negl Trop Dis 10: e0004581.

  • 34.

    Kato H, Jochim RC, Gomez EA, Tsunekawa S, Valenzuela JG, Hashiguchi Y , 2017. Salivary gland transcripts of the kissing bug, Panstrongylus chinai, a vector of Chagas disease. Acta Trop 174: 122129.

    • Search Google Scholar
    • Export Citation
  • 35.

    Santiago PB et al.2018. Exploring the molecular complexity of Triatoma dimidiata sialome. J Proteomics 174: 4760.

  • 36.

    Assumpção TC et al.2011. Insight into the salivary transcriptome and proteome of Dipetalogaster maxima. J Proteome Res 10: 669679.

  • 37.

    Amino R, Tanaka AS, Schenkman S , 2001. Triapsin, an unusual activatable serine protease from the saliva of the hematophagous vector of Chagas’ disease Triatoma infestans (Hemiptera: Reduviidae). Insect Biochem Mol Biol 31: 465472.

    • Search Google Scholar
    • Export Citation
  • 38.

    Faudry E, Lozzi SP, Santana JM, D’Souza-Ault M, Kieffer S, Felix CR, Ricart CAO, Sousa MV, Vernet T, Teixeira ARL , 2004. Triatoma infestans apyrases belong to the 5'-nucleotidase family. J Biol Chem 279: 1960719613.

    • Search Google Scholar
    • Export Citation
  • 39.

    Martins RM, Amino R, Daghastanli KR, Cuccovia IM, Juliano MA, Schenkman S , 2008. A short proregion of trialysin, a pore‐forming protein of Triatoma infestans salivary glands, controls activity by folding the N‐terminal lytic motif. FEBS J 275: 9941002.

    • Search Google Scholar
    • Export Citation
  • 40.

    Martínez-Barnetche J, Lavore A, Beliera M, Téllez-Sosa J, Zumaya-Estrada FA, Palacio V, Godoy-Lozano E, Rivera-Pomar R, Rodríguez MH , 2018. Adaptations in energy metabolism and gene family expansions revealed by comparative transcriptomics of three Chagas disease triatomine vectors. BMC Genomics 19: 123.

    • Search Google Scholar
    • Export Citation
  • 41.

    Breugelmans B, Simonet G, van Hoef V, Van Soest S, Vanden Broeck J , 2009. Pacifastin-related peptides: structural and functional characteristics of a family of serine peptidase inhibitors. Peptides 30: 622632.

    • Search Google Scholar
    • Export Citation
  • 42.

    Turk V, Stoka V, Turk D , 2008. Cystatins: biochemical and structural properties, and medical relevance. Front Biosci 13: 54065420.

  • 43.

    Kotsyfakis M, Sá-Nunes A, Francischetti IMB, Mather TN, Andersen JF, Ribeiro JMC , 2006. Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. J Biol Chem 281: 2629826307.

    • Search Google Scholar
    • Export Citation
  • 44.

    Kotsyfakis M, Karim S, Andersen JF, Mather TN, Ribeiro JMC , 2007. Selective cysteine protease inhibition contributes to blood-feeding success of the tick Ixodes scapularis. J Biol Chem 282: 2925629263.

    • Search Google Scholar
    • Export Citation
  • 45.

    Panzera F et al.2007. Genome size determination in Chagas disease transmitting bugs (Hemiptera–Triatominae) by flow cytometry. Am J Trop Med Hyg 76: 516521.

    • Search Google Scholar
    • Export Citation
  • 46.

    Ribeiro JMC et al.2014. An insight into the transcriptome of the digestive tract of the bloodsucking bug, Rhodnius prolixus. PLoS Negl Trop Dis 8: e2594.

    • Search Google Scholar
    • Export Citation
  • 47.

    Defferrari MS, Da Silva SR, Orchard I, Lange AB , 2018. A Rhodnius prolixus insulin receptor and its conserved intracellular signaling pathway and regulation of metabolism. Front Endocrinol 9: 745.

    • Search Google Scholar
    • Export Citation
  • 48.

    Medeiros MN et al.2011. Transcriptome and gene expression profile of ovarian follicle tissue of the triatomine bug Rhodnius prolixus. Insect Biochem Mol Biol 41: 823831.

    • Search Google Scholar
    • Export Citation
  • 49.

     Cardoso et al., 2020. Analysis of the Testicle’s Transcriptome of the Chagas Disease Vector Rhodnius prolixus. Available at: https://doi.org/10.1101/616193. Accessed December 11, 2021.

  • 50.

    Sun X, Kovacs T, Hu YJ, Yang WX , 2011. The role of actin and myosin during spermatogenesis. Mol Biol Rep 38: 39934001.

  • 51.

    Gibbons IR , 1981. Cilia and flagella of eukaryotes. J Cell Biol 91: 107124.

  • 52.

     Berni M, Bressan D, Simão Y, Julio A, Oliveira PL, Pane A, Araujo HM, 2020. Pigmentation loci as Markers for Genome Editing in the Chagas Disease Vector Rhodnius prolixus. Available at: https://doi.org/10.1101/2020.04.29.067934. Accessed December 11, 2021.

  • 53.

    Traverso L et al.2017. Comparative and functional triatomine genomics reveals reductions and expansions in insecticide resistance-related gene families. PLoS Negl Trop Dis 11: 125.

    • Search Google Scholar
    • Export Citation
  • 54.

    Feyereisen R , 2006. Evolution of insect P450. Biochem Soc Trans 34: 12521255.

  • 55.

     Feyereisen R, 2012. Insect CYP Genes and P450 Enzymes. Gilbert LI, ed. Insect Molecular Biology and Biochemistry, Amsterdam, Netherlands: Elsevier, 236--316.

  • 56.

    Oakeshott JG, Claudianos C, Campbell PM, Newcomb RD, Russell RJ , 2005. Biochemical genetics and genomics of insect esterases. Compr Mol Insect Sci 5–6: 309381.

    • Search Google Scholar
    • Export Citation
  • 57.

    Enayati AA, Ranson H, Hemingway J , 2005. Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14: 38.

  • 58.

    Zumaya-Estrada FA, Martínez-Barnetche J, Lavore A, Rivera-Pomar R, Rodríguez MH , 2018. Comparative genomics analysis of triatomines reveals common first line and inducible immunity-related genes and the absence of Imd canonical components among hemimetabolous arthropods. Parasit Vectors 11: 116.

    • Search Google Scholar
    • Export Citation
  • 59.

    Latorre-Estivalis JM, Sterkel M, Ons S, Lorenzo MG , 2020. Transcriptomics supports local sensory regulation in the antenna of the kissing-bug Rhodnius prolixus. BMC Genomics 21: 101.

    • Search Google Scholar
    • Export Citation
  • 60.

    Roces F, Manrique G , 1996. Different stridulatory vibrations during sexual behaviour and disturbance in the blood-sucking bug Triatoma infestans (Hemiptera: Reduviidae). J Insect Physiol 42: 231238.

    • Search Google Scholar
    • Export Citation
  • 61.

    Justi SA, Russo CA, dos Santos Mallet JR, Obara MT, Galvão C , 2014. Molecular phylogeny of Triatomini (Hemiptera: Reduviidae: Triatominae). Parasit Vectors 7: 149.

    • Search Google Scholar
    • Export Citation
  • 62.

    Kollien AH, Billingsley PF , 2002. Differential display of mRNAs associated with blood feeding in the midgut of the bloodsucking bug, Triatoma infestans. J Parasitol Res 88: 10261033.

    • Search Google Scholar
    • Export Citation
  • 63.

    Bettencourt BR, Hogan CC, Nimali M, Drohan BW , 2008. Inducible and constitutive heat shock gene expression responds to modification of Hsp70 copy number in Drosophila melanogaster but does not compensate for loss of thermotolerance in Hsp70 null flies. BMC Biol 6: 115.

    • Search Google Scholar
    • Export Citation
  • 64.

    Luo M, Li D, Wang Z, Guo W, Kang L, Zhou S , 2017. Juvenile hormone differentially regulates two Grp78 genes encoding protein chaperones required for insect fat body cell homeostasis and vitellogenesis. J Biol Chem 292: 88238834.

    • Search Google Scholar
    • Export Citation
  • 65.

    Bi P, Kuang S , 2015. Notch signaling as a novel regulator of metabolism. Trends Endocrinol Metab 26: 2482556.

  • 66.

    Rivera Pérez C, Clifton ME, Noriega FG, Jindra M , 2019. Juvenil hormone regulation and action. Saleuddin S, Lange AB, Orchard I, eds. Advances in Invertebrate (Neuro) Endocrinology: A Collection of Reviews in the Post-Genomic Era. Burlington, Canada: Apple Academic Press/CRC Press, 1–77.

  • 67.

    Atella GC, Gondim KC, Machado EA, Medeiros MN, Silva-Neto MA, Masuda H , 2005. Oogenesis and egg development in triatomines: a biochemical approach. An Acad Bras Cienc 77: 405430.

    • Search Google Scholar
    • Export Citation
  • 68.

    Sterkel M, Urlaub H, Rivera-Pomar R, Ons S , 2011. Functional proteomics of neuropeptidome dynamics during the feeding process of Rhodnius prolixus. J Proteome Res 10: 33633371.

    • Search Google Scholar
    • Export Citation
  • 69.

    Mollayeva S, Orchard I, Lange AB , 2018. The involvement of Rhopr-CRF/DH in feeding and reproduction in the blood-gorging insect Rhodnius prolixus. Gen Comp Endocrinol 258: 7990.

    • Search Google Scholar
    • Export Citation
  • 70.

    Badisco L, Van Wielendaele P, Vanden Broeck J , 2013. Eat to reproduce: a key role for the insulin signaling pathway in adult insects. Front Physiol 4: 202.

    • Search Google Scholar
    • Export Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Transcriptomics Applied to the Study of Chagas Disease Vectors

View More View Less
  • 1 Centro Multiusuário de Inovação Biomolecular, Departamento de Física, Universidade Estadual Paulista “Júlio de Mesquita Filho,” Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto, Brazil;
  • | 2 Institute of Biologic Information Processing (IB-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany;
  • | 3 Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil;
  • | 4 Laboratório de Parasitologia, Departamento de Ciências Biológicas, Universidade Estadual Paulista “Júlio de Mesquita Filho,” Faculdade de Ciências Farmacêuticas, Araraquara, Brazil
Restricted access

ABSTRACT.

Chagas disease is a neglected disease caused by the protozoan Trypanosoma cruzi, and is transmitted mainly by the feces of contaminated triatomines. Knowledge of the biological, ecological, behavioral, genetic, taxonomic, and systematic aspects of these vectors can contribute to the planning of vector control programs, because all species are considered to be potential vectors of Chagas disease. Transcriptomic studies, in general, provided a new view of the physiology of triatomines (aiding in the knowledge of reproductive aspects of the hematophagy process and even the immune system and the sensory apparatus) and even contributed, as a new tool, to the taxonomy and systematics of these insects. Thus, we conducted a review of the transcriptomic studies on Chagas disease vectors.

Author Notes

Address correspondence to Cleber Galvão, IOC/FIOCRUZ, Av. Brasil 4365, Pavilhão Rocha Lima, Sala 505, 21040-360 Rio de Janeiro, RJ, Brazil. E-mail: clebergalvao@gmail.com

Financial support: This work was financed by the Fundação de Amparo à Pesquisa do Estado de São Paulo (process no. 2018/25458-3), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brazil (finance code 001, and Conselho Nacional de Desenvolvimento Científico e Tecnológico.

Authors’ addresses: Kelly Cristine Borsatto and Raghuvir Krishnaswamy Arni, Centro Multiusuário de Inovação Biomolecular, Departamento de Física, Universidade Estadual Paulista “Júlio de Mesquita Filho,” Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto, Brazil, E-mails: kellyborsatto@gmail.com and raghuvir.arni@unesp.br. Monika Aparecida Coronado, Institute of Biologic Information Processing (IB-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany, E-mail: monikacoronado@gmail.com. Cleber Galvão, Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil, E-mail: clebergalvao@gmail.com. Kaio Cesar Chaboli Alevi, Laboratório de Parasitologia, Departamento de Ciências Biológicas, Universidade Estadual Paulista “Júlio de Mesquita Filho,” Faculdade de Ciências Farmacêuticas, Araraquara, Brazil, E-mail: kaiochaboli@hotmail.com.

Save