Polymerase Chain Reaction-Based Malaria Diagnosis Can Be Increasingly Adopted during Current Phase of Malaria Elimination in India

Manju Rahi Indian Council of Medical Research, New Delhi, India;
AcSIR, New Delhi, India

Search for other papers by Manju Rahi in
Current site
Google Scholar
PubMed
Close
,
Rishu Sharma Indian Council of Medical Research-National Institute of Malaria Research, New Delhi, India;
AcSIR, New Delhi, India

Search for other papers by Rishu Sharma in
Current site
Google Scholar
PubMed
Close
,
Poonam Saroha Indian Council of Medical Research-National Institute of Malaria Research, New Delhi, India;

Search for other papers by Poonam Saroha in
Current site
Google Scholar
PubMed
Close
,
Rini Chaturvedi International Center for Genetic Engineering and Biotechnology, New Delhi, India;

Search for other papers by Rini Chaturvedi in
Current site
Google Scholar
PubMed
Close
,
Praveen K. Bharti Indian Council of Medical Research-National Institute of Malaria Research, New Delhi, India;

Search for other papers by Praveen K. Bharti in
Current site
Google Scholar
PubMed
Close
, and
Amit Sharma Indian Council of Medical Research-National Institute of Malaria Research, New Delhi, India;
International Center for Genetic Engineering and Biotechnology, New Delhi, India;

Search for other papers by Amit Sharma in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT.

Despite commendable progress in control of malaria in India and other countries, there are hidden reservoirs of parasites in human hosts that continually feed malaria transmission. Submicroscopic infections are a significant proportion in low-endemic settings like India, and these infections possess transmission potential. Hence, these reservoirs of infection add to the existing roadblocks for malaria elimination. It is crucial that this submerged burden of malaria is detected and treated to curtail further transmission. The currently used diagnostic tools, including the so-called “gold standard” microscopy, are incapable of detecting these submicroscopic infections and thus are suboptimal. It is an opportune time to usher in more sensitive molecular tools like polymerase chain reaction (PCR) for routine diagnosis at all levels of healthcare as an additional diagnostic tool in routine settings. PCR assays have been developed into user-friendly formats for field diagnostics and are near-point-of-collection. Because of the COVID-19 pandemic in India, these are being used rampantly across the country. The facilities created for COVID-19 diagnosis can easily be co-opted and harnessed for malaria diagnosis to augment surveillance by the inclusion of molecular techniques like PCR in the routine national malaria control program.

Author Notes

Address correspondence to Amit Sharma, National Institute of Malaria Research (NIMR), Sector 8, Dwarka, New Delhi, India, 110077. E-mail: directornimr@gmail.com

Authors’ addresses: Manju Rahi, Indian Council of Medical Research, New Delhi, India, E-mail: drmanjurahi@gmail.com. Rishu Sharma and Poonam Saroha, Indian Council of Medical Research-National Institute of Malaria Research, New Delhi, India, E-mails: rishi.rishu2231@gmail.com and sarohapoonam06@gmail.com. Rini Chaturvedi, International Center for Genetic Engineering and Biotechnology, New Delhi, India, E-mail: rini.chaturvedi@gmail.com. Praveen K. Bharti, Indian Council of Medical Research-National Institute of Malaria Research, New Delhi, India, E-mail: saprapbs@yahoo.co.in. Amit Sharma, Indian Council of Medical Research-National Institute of Malaria Research, New Delhi, India, and International Center for Genetic Engineering and Biotechnology, New Delhi, India, E-mail: directornimr@gmail.com.

  • 1.

    World Health Organization , 2020. World Malaria Report 2020. Geneva, Switzerland: WHO.

  • 2.

    NVBDCP , 2019. National Vector Borne Disease Control Programme. Available at: https://nvbdcp.gov.in/index1.php?lang=1&level=1&sublinkid=5784&lid=3689. Accessed 2019.

    • PubMed
    • Export Citation
  • 3.

    Whittaker C , Slater H , Nash R , Bousema T , Drakeley C , Ghani AC , Okell LC , 2021. Global patterns of submicroscopic Plasmodium falciparum malaria infection: insights from a systematic review and meta-analysis of population surveys. Lancet Microbe 2: e366e374.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Barry A , Bradley J , Stone W , Guelbeogo MW , Lanke K , Ouedraogo A , Soulama I , 2021. Higher gametocyte production and mosquito infectivity in chronic compared to incident Plasmodium falciparum infections. Nat Commun 12: 2443.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Sumner KM , Freedman E , Abel L , Obala A , Pence BW , Wesolowski A , Meshnick SR , Prudhomme-O’Meara W , Taylor SM , 2021. Genotyping cognate Plasmodium falciparum in humans and mosquitoes to estimate onward transmission of asymptomatic infections. Nat Commun 12: 909.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Anon , 2013. National Drug Policy on Malaria 2013. India: Directorate of National Vector Borne Disease Control Programme, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of India.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Zimmerman PA , Howes RE , 2015. Malaria diagnosis for malaria elimination. Curr Opin Infect Dis 28: 446454.

  • 8.

    Chaturvedi R , Deora N , Bhandari D , Parvez S , Sinha A , Sharma A , 2021. Trends of neglected Plasmodium species infection in humans over the past century in India. One Health 11: 100190.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Park HS , Rinehart MT , Walzer KA , Chi J-TA , Wax A , 2016. Automated detection of P. falciparum using machine learning algorithms with quantitative phase images of unstained cells. PLoS One 11: e0163045.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Linder N , Turkki R , Wallliander M , Martensson A , Diwan V , Rahtu E , Pietikainen M , Lundin M , Lundin J , 2014. A malaria diagnostic tool based on computer vision screening and visualization of Plasmodium falciparum candidate areas in digitized blood smears. PLoS One 9: e104855.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Moody AH , Chiodini PL , 2002. Non-microscopic method for malaria diagnosis using OptiMAL IT, a second-generation dipstick for malaria pLDH antigen detection. Br J Biomed Sci 59: 228231.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ndao M , Bandyayera E , Kokoskin E , Gyorkos TW , MacLean JD , 2004. Comparison of blood smear, antigen detection, and nested-PCR methods for screening refugees from regions where malaria is endemic after a malaria outbreak in Quebec, Canada. J Clin Microbiol 42: 26942700.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hayward RE , Sullivan DJ , Day KP , 2000. Plasmodium falciparum: histidine-rich protein II is expressed during gametocyte development. Exp Parasitol 96: 139146.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Rock EP , Marsh K , Saul AJ , Wellems TE , Taylor DW , Maloy WL , Howard RJ , 1987. Comparative analysis of the Plasmodium falciparum histidine-rich proteins HRP-I, HRP-II and HRP-III in malaria parasites of diverse origin. Parasitology 95: 209227.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Howard RJ , Uni S , Aikawa M , Aley SB , Leech JH , Lew AM , Wellems TE , Rener J , Taylor DW , 1986. Secretion of a malarial histidine-rich protein (Pf HRP II) from Plasmodium falciparum-infected erythrocytes. Cell Biol (Henderson NV) 103: 1126911277.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    McMorrow ML , Aidoo M , Kachur SP , 2011. Malaria rapid diagnostic tests in elimination settings—can they find the last parasite? Clin Microbiol Infect 17: 16241631.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Price RN , Tjitra E , Guerra CA , Yeung S , White NJ , Anstey NM , 2007. Vivax malaria: neglected and not benign. Am J Trop Med Hyg 77: 7987.

  • 18.

    Verma AK , Bharti PK , Das A , 2018. HRP-2 deletion: a hole in the ship of malaria elimination. Lancet Infect Dis 18: 826827.

  • 19.

    Kojom LP , Singh V , 2020. Prevalence of Plasmodium falciparum field isolates with deletions in histidine-rich protein 2 and 3 genes in context with sub-Saharan Africa and India: a systematic review and meta-analysis. Malar J 19: 46.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Pati P , Dhangadamajhi G , Bal M , Ranjit M , 2018. High proportions of pfhrp2 gene deletion and performance of HRP2-based rapid diagnostic test in Plasmodium falciparum field isolates of Odisha. Malar J 17: 394.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    World Health Organization , 2018. Malaria Surveillance, Monitoring and Evaluation: A Reference Manual. Geneva, Switzerland: WHO.

  • 22.

    Hofmann N , Mwingira F , Shekalaghe S , Robinson LJ , Mueller I , Felger I , 2015. Ultra-sensitive detection of Plasmodium falciparum by amplification of multi-copy subtelomeric targets. PLoS Med 12: e1001788.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Jacobson JO , Cueto C , Smith JL , Hwang J , Gosling R , Bennett A , 2017. Surveillance and response for high-risk populations: what can malaria elimination programmes learn from the experience of HIV? Malar J 16: 33.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Han TZ , Han KT , Aye KH , Hlaing T , Thant KZ , Vythilingam I , 2017. Comparison of microscopy and PCR for the detection of human Plasmodium species and Plasmodium knowlesi in southern Myanmar. Asian Pac J Trop Biomed 7: 680685.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Mbanefo A , Kumar N , 2020. Evaluation of malaria diagnostic methods as a key for successful control and elimination programs. Trop Med Infect Dis 5: 102.

  • 26.

    World health Organization , 2021. WHO Guidelines for Malaria. Geneva, Switzerland: WHO.

  • 27.

    Recht J , Siqueira AM , Monteiro WM , Herrera S , Herrera S , Lacerda MVG , 2017. Malaria in Brazil, Colombia, Peru and Venezuela: current challenges in malaria control and elimination. Malar J 16: 273.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Ranjha R , Sharma A , 2021. Forest malaria: the prevailing obstacle for malaria control and elimination in India. BMJ Glob Health 6: e005391.

  • 29.

    Okell LC , Bousema T , Griffin JT , Ouédraogo AL , Ghani AC , Drakeley CJ , 2012. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat Commun 3: 1237.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Slater H et al.2019. The temporal dynamics and infectiousness of subpatent Plasmodium falciparum infections in relation to parasite density. Nat Commun 10: 1433.

  • 31.

    Koepfli C et al.2017. Sustained malaria control over an 8-year period in Papua New Guinea: the challenge of low-density asymptomatic Plasmodium infections. J Infect Dis 216: 14341443.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Chourasia MK et al.2017. Additional burden of asymptomatic and sub-patent malaria infections during low transmission season in forested tribal villages in Chhattisgarh, India. Malar J 16: 320.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Nguyen T-N et al.2018. The persistence and oscillations of submicroscopic Plasmodium falciparum and Plasmodium vivax infections over time in Vietnam: an open cohort study. Lancet Infect Dis 18: 565572.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Ferreira IM , Yokoo EM , Souza-Santos R , Galvão ND , Atanaka-Santos M , 2012. Factors associated with the incidence of malaria in settlement areas in the district of Juruena, Mato Grosso state, Brazil. Cien Saude Colet 17: 24152424.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    da Silva-Nunes M , Moreno M , Conn JE , Gamboa D , Abeles S , Vinetz JM , Ferreira MU , 2012. Amazonian malaria: Asymptomatic human reservoirs, diagnostic challenges, environmentally driven changes in mosquito vector populations, and the mandate for sustainable control strategies. Acta Trop 121: 281291.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Churcher TS , Bousema T , Walker M , Drakeley CJ , Schneider P , Ouedraogo AL , Basáñez M-G , 2013. Predicting mosquito infection from Plasmodium falciparum gametocyte density and estimating the reservoir of infection. eLife 2: e00626.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Shekalaghe SA , Bousema T , Kunei KK , Lushino P , Masokoto A , Wolters LR , Mwakalinga S , Mosha FW , Sauerwein RW , Drakeley CJ , 2007. Submicroscopic Plasmodium falciparum gametocyte carriage is common in an area of low and seasonal transmission in Tanzania. Trop Med Int Health 12: 547553.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Coleman RE , Kumpitak C , Ponlawat A , Maneechai N , Phunkitchar V , Rachapaew N , Zollner G , Sattabongkot J , 2004. Infectivity of asymptomatic Plasmodium-infected human populations to Anopheles virus mosquitoes in western Thailand. J Med Entomol 41: 201208.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Schneider P , Bousema T , Gouagna LC , Otieno S , van de Vegte-Bolmer M , Omar SA , Sauerwein RW , 2007. Submicroscopic Plasmodium falciparum gametocyte densities frequently result in mosquito infection. Am J Trop Med Hyg 76: 470474.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Mwingira F , Genton B , Kabanywanyi A-NM , Felger I , 2014. Comparison of detection methods to estimate asexual Plasmodium falciparum parasite prevalence and gametocyte carriage in a community survey in Tanzania. Malar J 13: 433.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Tran TM et al.2013. An intensive longitudinal cohort study of malian children and adults reveals no evidence of acquired immunity to Plasmodium falciparum infection. Clin Infect Dis 57: 4047.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Rodriguez-Barraquer I et al.2018. Quantification of anti-parasite and anti-disease immunity to malaria as a function of age and exposure. eLife 7: e38532.

  • 43.

    Eijk AV , Sutton PL , Ramanathapuram L , Sullivan SA , Kanagaraj D , Priya GL , 2019. The burden of submicroscopic and asymptomatic malaria in India revealed from epidemiology studies at three varied transmission sites in India. Sci Rep 9: 17095.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Robortella DR et al.2020. Prospective assessment of malaria infection in a semi-isolated Amazonian indigenous Yanomami community: transmission heterogeneity and predominance of submicroscopic infection. PLoS One 15: e0230643.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Björkman A , Morris U , 2020. Why asymptomatic Plasmodium falciparum infections are common in low-transmission settings. Trends Parasitol 36: 898905.

  • 46.

    Stresman G , Kobayashi T , Kamangi A , Thuma PE , Mharakurwa S , Moss WJ , Shiff C , 2012. Malaria research challenges in low prevalence settings. Malar J 11: 353.

  • 47.

    Bousema T , Okell LC , Felger I , Drakeley CJ , 2014. Asymptomatic malaria infections: detectability, transmissibility and public health relevance. Nat Rev Microbiol 12: 833840.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Ouédraogo AL et al.2009. Substantial contribution of submicroscopical Plasmodium falciparum gametocyte carriage to the infectious reservoir in an area of seasonal transmission. PLoS One 4: e8410.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Taddesse FG et al.2018. The relative contribution of symptomatic and asymptomatic Plasmodium vivax and Plasmodium falciparum infections to the infectious reservoir in a low-endemic setting in Ethiopia. Clin Infect Dis 66: 18831891.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Ouédraogo AL et al.2016. Dynamics of the human infectious reservoir for malaria determined by mosquito feeding assays and ultrasensitive malaria diagnosis in Burkina Faso. J Infect Dis 213: 9099.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Pandey M , Rahi M , Sharma A , 2021. The Indian burden of malaria in pregnancy needs assessment. Med 2: 464469.

  • 52.

    Gatton ML , Cheng Q , 2002. Evaluation of the pyrogenic threshold for Plasmodium falciparum malaria in naive individuals. Am J Trop Med Hyg 66: 467473.

  • 53.

    Hemingway J , Shretta R , Wells TN , Bell D , Djimde AA , Achee N , Qi G , 2016. Tools and strategies for malaria control and elimination: what do we need to achieve a grand convergence in malaria? PLoS Biol 14: e1002380.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Branch O , Casapia WM , Gamboa DV , Hernandez JN , Alava FF , Roncal N , Alvarez E , Perez EJ , Gotuzzo E , 2005. Clustered local transmission and asymptomatic Plasmodium falciparum and Plasmodium vivax malaria infections in a recently emerged, hypoendemic Peruvian Amazon community. Malar J 4: 27.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Cook J et al.2015. Mass screening and treatment on the basis of results of a Plasmodium falciparum-specific rapid diagnostic test did not reduce malaria incidence in Zanzibar. J Infect Dis 211: 14761483.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Santolamazza F , Avellino P , Siciliano G , Yao FA , Lombardo F , Ouédraogo JB , Modiano D , Alano P , Mangano VD , 2017. Detection of Plasmodium falciparum male and female gametocytes and determination of parasite sex ratio in human endemic populations by novel, cheap and robust RTqPCR assays. Malar J 16: 468.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Karl S , Davis TM , St-Pierre T , 2009. A comparison of the sensitivities of detection of Plasmodium falciparum gametocytes by magnetic fractionation, thick blood film microscopy, and RT-PCR. Malar J 8: 98.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Mbuyi MLT , Bouyou-Akotet MK , Mawili-Mboumba1 DP , 2014. Molecular detection of Plasmodium falciparum infection in matched peripheral and placental blood samples from delivering women in Libreville, Gabon. Malar Res Treat  014: 486042.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Campos IM , Uribe ML , Cuesta C , Franco-Gallego A , Carmona-Fonseca J , Maestre A , 2011. Diagnosis of gestational, congenital, and placental malaria in Colombia: comparison of the efficacy of microscopy, nested polymerase chain reaction, and histopathology. Am J Trop Med Hyg 84: 929935.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Central TB Division, Directorate General of Health Services, Ministry of Health & Family Welfare, New Delhi National Strategic Plan for Tuberculosis: 2017-25 Elimination by 2025.

    • PubMed
    • Export Citation
  • 61.

    Nair CB , Manjula J , Subramani PA , Nagendrappa PB , Manoj MN , Malpani S , Pullela PK , 2016. Differential diagnosis of malaria on Truelab Uno®, a portable, real-time, MicroPCR device for point-of-care applications. PLoS One 11: e0146961.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Notomi T , Okayama H , Masubuchi H , Yonekawa T , Watanabe K , Amino N , Hase T , 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28: E63.

  • 63.

    Morris U , Aydin-Schmidt B , 2021. Performance and application of commercially available loop-mediated isothermal amplification (LAMP) kits in malaria endemic and non-endemic settings. Diagnostics (Basel) 11: 336.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Indian Council of Medical Research, New Delhi, India COVID-19 Testing Labs. Available at: https://www.icmr.gov.in/pdf/covid/labs/archive/COVID_Testing_Labs_11062020.pdf.

    • PubMed
    • Export Citation
  • 65.

    Rahi M , Sharma A , 2021. Free market availability of rapid diagnostics will empower communities to eliminate malaria in India. Am J Trop Med Hyg 105: 281283.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Rahi M , Mittal P , Kaur J , Sharma A , 2021. Malaria card: an empowering tool for patients and for epidemiological recording. J Glob Health Rep 5: e2021062.

  • 67.

    Bhowmick I , Chutia D , Sharma A , Rahi M , Chhibber-Goel J , 2021. FeverTracker: validation of an mHealth technology platform for malaria surveillance in India. J Med Internet Res.5: e28951

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Singh N , Bharti PK , Singh MP , Singh R , Yeboah-Antwi K , Desai M , Udhayakumar V , Muniyandi M , Hamer DH , Wylie BJ , 2015. What is the burden of submicroscopic malaria in pregnancy in central India? Pathog Glob Health 109: 3038.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Waltmann A , Darcy AW , Harris x I , Koepfli, Cristian, Lodo J , vahi V , Piziki D , Shanks GD , Barry AE , 2015. High rates of asymptomatic, sub-microscopic Plasmodium vivax infection and disappearing Plasmodium falciparum malaria in an area of low transmission in Solomon Islands. PLoS Negl Trop Dis 9: e0003758.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Ganguly S , Saha P , Guha SK , Biswas A , Das S , Kundu PK , Maji AK , 2013. High prevalence of asymptomatic malaria in a tribal population in eastern India. J Clin Microbiol 51: 14391444.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Vareta J , Buchwald AG , Barrall A , Cohee LM , Walldorf JA , Coalson JE , Seydel K , Sixpence A , 2020. Submicroscopic malaria infection is not associated with fever in cross-sectional studies in Malawi. Malar J 19: 233.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Tripura R et al.2017. Submicroscopic Plasmodium prevalence in relation to malaria incidence in 20 villages in western Cambodia. Malar J 16: 56.

  • 73.

    Sattabongkot J , Suansomjit C , Nguitragool W , Sirichaisinthop J , Warit S , Tiensuwan M , Buates S , 2018. Prevalence of asymptomatic Plasmodium infections with sub-microscopic parasite densities in the northwestern border of Thailand: a potential threat to malaria elimination. Malar J 17: 329.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Adu B , Issahaque Q , Sarkodie-Addo T , Kumordjie S , Kyei-Baafour E , Sinclear CK , Eyia-Ampah S , Owusu-Yeboa E , Theisen M , Dodoo D , 2020. Microscopic and submicroscopic asymptomatic Plasmodium falciparum infections in Ghanaian children and protection against febrile malaria. Infect Immun 88: e00125e20.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Hailemeskel E et al.2021. The epidemiology and detectability of asymptomatic Plasmodium vivax and Plasmodium falciparum infections in low, moderate and high transmission settings in Ethiopia. Malar J 20: 59.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Krishna S , Yadav A , Bhandari S , Vishwakarma AK , Bharti PK , Mandavi PL , Bahgel P , Basak S , Sharma RK , Singh N , 2017. Prevalence of malaria in two highly endemic Community Health Centers in the Bastar district, Chhattisgarh showing mixed infections with Plasmodium species. Sci Rep 7: 16860.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Kaura T , Kaur J , Sharma A , Dhiman A , Pangotra M , Upadhyay AK , Grover GS , Sharma SK , 2019. Prevalence of submicroscopic malaria in low transmission state of Punjab: a potential threat to malaria elimination. J Vector Borne Dis 56: 7884.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Ahmad A , Soni P , Kumar L , Singh MP , Verma AK , Sharma A , Das A , Bharti PK , 2021. Comparison of polymerase chain reaction, microscopy, and rapid diagnostic test in malaria detection in a high burden state (Odisha) of India. Pathog Glob Health 115: 267272.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

     Rahi M, Sharma A. 2022. Should India be considering deployment of the first malaria vaccine RTS,S/AS01? BMJ Glob Health 7: e007870.

    • PubMed
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 9054 700 215
Full Text Views 249 134 0
PDF Downloads 133 18 0
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save