• 1.

    Becker SL et al.2015. Real-time PCR for detection of Strongyloides stercoralis in human stool samples from Cote d’Ivoire: diagnostic accuracy, inter-laboratory comparison and patterns of hookworm co-infection. Acta Trop 150: 210217.

    • Search Google Scholar
    • Export Citation
  • 2.

    Jongsuksuntigul P, Intapan PM, Wongsaroj T, Nilpan S, Singthong S, Veerakul S, Maleewong W, 2003. Prevalence of Strongyloides stercoralis infection in northeastern Thailand (agar plate culture detection). J Med Assoc Thai 86: 737741.

    • Search Google Scholar
    • Export Citation
  • 3.

    Nontasut P, Muennoo C, Sa-nguankiat S, Fongsri S, Vichit A, 2005. Prevalence of Strongyloides in northern Thailand and treatment with ivermectin vs. albendazole. Southeast Asian J Trop Med Public Health 36: 442444.

    • Search Google Scholar
    • Export Citation
  • 4.

    Beknazarova M, Whiley H, Ross K, 2016. Strongyloidiasis: a disease of socioeconomic disadvantage. Int J Environ Res Public Health 13: 517.

  • 5.

    Prasongdee TK, Laoraksawong P, Kanarkard W, Kraiklang R, Sathapornworachai K, Naonongwai S, Laummaunwai P, Sanpool O, Intapan PM, Maleewong W, 2017. An eleven-year retrospective hospital-based study of epidemiological data regarding human strongyloidiasis in northeast Thailand. BMC Infect Dis 17: 627.

    • Search Google Scholar
    • Export Citation
  • 6.

    Hauber HP, Galle J, Chiodini PL, Rupp J, Birke R, Vollmer E, Zabel P, Lange C, 2005. Fatal outcome of a hyperinfection syndrome despite successful eradication of Strongyloides with subcutaneous ivermectin. Infection 33: 383386.

    • Search Google Scholar
    • Export Citation
  • 7.

    Mejia R, Nutman TB, 2012. Screening, prevention, and treatment for hyperinfection syndrome and disseminated infections caused by Strongyloides stercoralis. Curr Opin Infect Dis 25: 458463.

    • Search Google Scholar
    • Export Citation
  • 8.

    Mendes T, Minori K, Ueta M, Miguel DC, Allegretti SM, 2017. Strongyloidiasis current status with emphasis in diagnosis and drug research. J Parasitol Res 2017: 5056314.

    • Search Google Scholar
    • Export Citation
  • 9.

    Requena-Mendez A, Chiodini P, Bisoffi Z, Buonfrate D, Gotuzzo E, Munoz J, 2013. The laboratory diagnosis and follow up of strongyloidiasis: a systematic review. PLoS Negl Trop Dis 7: e2002.

    • Search Google Scholar
    • Export Citation
  • 10.

    Chaves LA, Goncalves AL, Paula FM, Silva NM, Silva CV, Costa-Cruz JM, Freitas MA, 2015. Comparison of parasitological, immunological and molecular methods for evaluation of fecal samples of immunosuppressed rats experimentally infected with Strongyloides venezuelensis. Parasitology 142: 17151721.

    • Search Google Scholar
    • Export Citation
  • 11.

    Agrawal V, Agarwal T, Ghoshal UC, 2009. Intestinal strongyloidiasis: a diagnosis frequently missed in the tropics. Trans R Soc Trop Med Hyg 103: 242246.

    • Search Google Scholar
    • Export Citation
  • 12.

    Bisoffi Z et al.2014. Diagnostic accuracy of five serologic tests for Strongyloides stercoralis infection. PLoS Negl Trop Dis 8: e2640.

  • 13.

    Buonfrate D et al.2015. Accuracy of five serologic tests for the follow up of Strongyloides stercoralis infection. PLoS Negl Trop Dis 9: e0003491.

    • Search Google Scholar
    • Export Citation
  • 14.

    Eamudomkarn C, Sithithaworn P, Sithithaworn J, Kaewkes S, Sripa B, Itoh M, 2015. Comparative evaluation of Strongyloides ratti and S. stercoralis larval antigen for diagnosis of strongyloidiasis in an endemic area of opisthorchiasis. Parasitol Res 114: 25432551.

    • Search Google Scholar
    • Export Citation
  • 15.

    Paula FM, Malta Fde M, Marques PD, Sitta RB, Pinho JR, Gryschek RC, Chieffi PP, 2015. Molecular diagnosis of strongyloidiasis in tropical areas: a comparison of conventional and real-time polymerase chain reaction with parasitological methods. Mem Inst Oswaldo Cruz 110: 272274.

    • Search Google Scholar
    • Export Citation
  • 16.

    Sitta RB, Malta FM, Pinho JR, Chieffi PP, Gryschek RC, Paula FM, 2014. Conventional PCR for molecular diagnosis of human strongyloidiasis. Parasitology 141: 716721.

    • Search Google Scholar
    • Export Citation
  • 17.

    Nadir E, Grossman T, Ciobotaro P, Attali M, Barkan D, Bardenstein R, Zimhony O, 2016. Real-time PCR for Strongyloides stercoralis-associated meningitis. Diagn Microbiol Infect Dis 84: 197199.

    • Search Google Scholar
    • Export Citation
  • 18.

    Verweij JJ, Canales M, Polman K, Ziem J, Brienen EA, Polderman AM, van Lieshout L, 2009. Molecular diagnosis of Strongyloides stercoralis in faecal samples using real-time PCR. Trans R Soc Trop Med Hyg 103: 342346.

    • Search Google Scholar
    • Export Citation
  • 19.

    Kristanti H, Meyanti F, Wijayanti MA, Mahendradhata Y, Polman K, Chappuis F, Utzinger J, Becker SL, Murhandarwati EEH, 2018. Diagnostic comparison of Baermann funnel, Koga agar plate culture and polymerase chain reaction for detection of human Strongyloides stercoralis infection in Maluku, Indonesia. Parasitol Res 117: 32293235.

    • Search Google Scholar
    • Export Citation
  • 20.

    Miotke L, Lau BT, Rumma RT, Ji HP, 2014. High sensitivity detection and quantitation of DNA copy number and single nucleotide variants with single color droplet digital PCR. Anal Chem 86: 26182624.

    • Search Google Scholar
    • Export Citation
  • 21.

    Wilson M, Glaser KC, Adams-Fish D, Boley M, Mayda M, Molestina RE, 2015. Development of droplet digital PCR for the detection of Babesia microti and Babesia duncani. Exp Parasitol 149: 2431.

    • Search Google Scholar
    • Export Citation
  • 22.

    Yang R, Paparini A, Monis P, Ryan U, 2014. Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples. Int J Parasitol 44: 11051113.

    • Search Google Scholar
    • Export Citation
  • 23.

    Ramirez JD, Herrera G, Hernandez C, Cruz-Saavedra L, Munoz M, Florez C, Butcher R, 2018. Evaluation of the analytical and diagnostic performance of a digital droplet polymerase chain reaction (ddPCR) assay to detect Trypanosoma cruzi DNA in blood samples. PLoS Negl Trop Dis 12: e0007063.

    • Search Google Scholar
    • Export Citation
  • 24.

    Mahendran P, Liew JWK, Amir A, Ching XT, Lau YL, 2020. Droplet digital polymerase chain reaction (ddPCR) for the detection of Plasmodium knowlesi and Plasmodium vivax. Malar J 19: 241.

    • Search Google Scholar
    • Export Citation
  • 25.

    Jongthawin J, Intapan PM, Lulitanond V, Sanpool O, Thanchomnang T, Sadaow L, Maleewong W, 2016. Detection and quantification of Wuchereria bancrofti and Brugia malayi DNA in blood samples and mosquitoes using duplex droplet digital polymerase chain reaction. Parasitol Res 115: 29672972.

    • Search Google Scholar
    • Export Citation
  • 26.

    Sithithaworn P, Srisawangwong T, Tesana S, Daenseekaew W, Sithithaworn J, Fujimaki Y, Ando K, 2003. Epidemiology of Strongyloides stercoralis in north-east Thailand: application of the agar plate culture technique compared with the enzyme-linked immunosorbent assay. Trans R Soc Trop Med Hyg 97: 398402.

    • Search Google Scholar
    • Export Citation
  • 27.

    Elkins DB, Haswell-Elkins MR, Mairiang E, Mairiang P, Sithithaworn P, Kaewkes S, Bhudhisawasdi V, Uttaravichien T, 1990. A high frequency of hepatobiliary disease and suspected cholangiocarcinoma associated with heavy Opisthorchis viverrini infection in a small community in north-east Thailand. Trans R Soc Trop Med Hyg 84: 715719.

    • Search Google Scholar
    • Export Citation
  • 28.

    Anamnart W, Intapan PM, Maleewong W, 2013. Modified formalin-ether concentration technique for diagnosis of human strongyloidiasis. Korean J Parasitol 51: 743745.

    • Search Google Scholar
    • Export Citation
  • 29.

    Boonjaraspinyo S, Boonmars T, Kaewsamut B, Ekobol N, Laummaunwai P, Aukkanimart R, Wonkchalee N, Juasook A, Sriraj P, 2013. A cross-sectional study on intestinal parasitic infections in rural communities, northeast Thailand. Korean J Parasitol 51: 727734.

    • Search Google Scholar
    • Export Citation
  • 30.

    Eamudomkarn C, et al.2018. Diagnostic performance of urinary IgG antibody detection: a novel approach for population screening of strongyloidiasis. PLOS ONE 13: e0192598.

    • Search Google Scholar
    • Export Citation
  • 31.

    McHugh ML, 2012. Interrater reliability: the kappa statistic. Biochem Med (Zagreb) 22: 276282.

  • 32.

    Ruantip S, Eamudomkarn C, Techasen A, Wangboon C, Sithithaworn J, Bethony JM, Itoh M, Sithithaworn P, 2019. Accuracy of urine and serum assays for the diagnosis of strongyloidiasis by three enzyme-linked immunosorbent assay protocols. Am J Trop Med Hyg 100: 127129.

    • Search Google Scholar
    • Export Citation
  • 33.

    Dreyer G, Fernandes-Silva E, Alves S, Rocha A, Albuquerque R, Addiss D, 1996. Patterns of detection of Strongyloides stercoralis in stool specimens: implications for diagnosis and clinical trials. J Clin Microbiol 34: 25692571.

    • Search Google Scholar
    • Export Citation
  • 34.

    Uparanukraw P, Phongsri S, Morakote N, 1999. Fluctuations of larval excretion in Strongyloides stercoralis infection. Am J Trop Med Hyg 60: 967973.

    • Search Google Scholar
    • Export Citation
  • 35.

    Janwan P, Intapan PM, Thanchomnang T, Lulitanond V, Anamnart W, Maleewong W, 2011. Rapid detection of Opisthorchis viverrini and Strongyloides stercoralis in human fecal samples using a duplex real-time PCR and melting curve analysis. Parasitol Res 109: 15931601.

    • Search Google Scholar
    • Export Citation
  • 36.

    Kramme S, Nissen N, Soblik H, Erttmann K, Tannich E, Fleischer B, Panning M, Brattig N, 2011. Novel real-time PCR for the universal detection of Strongyloides species. J Med Microbiol 60: 454458.

    • Search Google Scholar
    • Export Citation
  • 37.

    Koepfli C, Nguitragool W, Hofmann NE, Robinson LJ, Ome-Kaius M, Sattabongkot J, Felger I, Mueller I, 2016. Sensitive and accurate quantification of human malaria parasites using droplet digital PCR (ddPCR). Sci Rep 6: 39183.

    • Search Google Scholar
    • Export Citation
  • 38.

    Sultana Y, Jeoffreys N, Watts MR, Gilbert GL, Lee R, 2013. Real-time polymerase chain reaction for detection of Strongyloides stercoralis in stool. Am J Trop Med Hyg 88: 10481051.

    • Search Google Scholar
    • Export Citation
  • 39.

    Buonfrate D, Requena-Mendez A, Angheben A, Cinquini M, Cruciani M, Fittipaldo A, Giorli G, Gobbi F, Piubelli C, Bisoffi Z, 2018. Accuracy of molecular biology techniques for the diagnosis of Strongyloides stercoralis infection-A systematic review and meta-analysis. PLoS Negl Trop Dis 12: e0006229.

    • Search Google Scholar
    • Export Citation
  • 40.

    Yu Z, Zhao Z, Chen L, Li J, Ju X, 2020. Development of a droplet digital PCR for detection of Trichuriasis in sheep. J Parasitol 106: 603610.

  • 41.

    Li H et al.2018. Application of droplet digital PCR to detect the pathogens of infectious diseases. Biosci Rep 38: BSR20181170.

  • 42.

    Sato Y, Kobayashi J, Toma H, Shiroma Y, 1995. Efficacy of stool examination for detection of Strongyloides infection. Am J Trop Med Hyg 53: 248250.

    • Search Google Scholar
    • Export Citation
  • 43.

    Gordon CA, Gray DJ, Gobert GN, McManus DP, 2011. DNA amplification approaches for the diagnosis of key parasitic helminth infections of humans. Mol Cell Probes 25: 143152.

    • Search Google Scholar
    • Export Citation
  • 44.

    Weerakoon KG, Gordon CA, Williams GM, Cai P, Gobert GN, Olveda RM, Ross AG, Olveda DU, McManus DP, 2017. Droplet digital PCR diagnosis of human schistosomiasis: parasite cell-free DNA detection in diverse clinical samples. J Infect Dis 216: 16111622.

    • Search Google Scholar
    • Export Citation
 
 

 

 

 

 

 

 

Development and Efficacy of Droplet Digital PCR for Detection of Strongyloides stercoralis in Stool

View More View Less
  • 1 Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;
  • | 2 Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;
  • | 3 Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand;
  • | 4 Biomedical Science Program, Graduate School, Khonkaen University, Khon Kaen, Thailand;
  • | 5 Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;
  • | 6 Faculty of Medicine, Mahasarakham University, Mahasarakham, Thailand

ABSTRACT.

Human strongyloidiasis is one of the neglected tropical diseases caused by infection with soil-transmitted helminth Strongyloides stercoralis. Conventional stool examination, a method commonly used for diagnosis of S. stercoralis, has low sensitivity, especially in the case of light infections. Herein, we developed the droplet digital polymerase chain reaction (ddPCR) assay to detect S. stercoralis larvae in stool and compared its performance with real-time PCR and stool examination techniques (formalin ethyl-acetate concentration technique [FECT] and agar plate culture [APC]). The ddPCR results showed 98% sensitivity and 90% specificity, and real-time PCR showed 82% sensitivity and 76.7% specificity when compared with the microscopic methods. Moreover, ddPCR could detect a single S. stercoralis larva in feces, and cross-reactions with other parasites were not observed. In conclusion, a novel ddPCR method exhibited high sensitivity and specificity for detection of S. stercoralis in stool samples. This technique may help to improve diagnosis, particularly in cases with light infection. In addition, ddPCR technique might be useful for screening patients before starting immunosuppressive drug therapy, and follow-up after treatment of strongyloidiasis.

Author Notes

Address correspondence to Nuttanan Hongsrichan, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand. E-mail: nuttho@kku.ac.th

Financial support: This work was financially supported by the young researcher development project of Khon Kaen University (2019) and Invitation Research fund (Grant number IN63250) Faculty of Medicine, Khon Kaen University, Thailand.

Authors’ addresses: Kantapong Iamrod, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, E-mail: kantapongia@kkumail.com. Apisit Chaidee, Kulthida Y. Kopolrat, Chanika Worasith, Somchai Pinlaor, Paiboon Sithithaworn, and Nuttanan Hongsrichan, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, and Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, E-mails: apisch@kku.ac.th, kulthida_kop@yahoo.com, chanika.w@kkumail.com, psomec@kku.ac.th, paibsit@gmail.com, and nuttho@kku.ac.th. Rucksak Rucksaken, Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand, E-mail: lucidlucky@gmail.com. Phattharaphon Wongphutorn, Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, and Biomedical Science Program, Graduate School, Khon kaen University, Khon Kaen, Thailand, E-mail: phat_phutorn@hotmail.com. Kitti Intuyod, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, E-mail: kittin@kku.ac.th. Jiraporn Sithithaworn, Faculty of Medicine, Mahasarakham University, Mahasarakham, Thailand, E-mail: jirapornsith@gmail.com.

Save