• 1.

    Zanluca C et al., 2015. First report of autochthonous transmission of Zika virus in Brazil. Mem Inst Oswaldo Cruz 110: 569572.

  • 2.

    World Health Organization , 2016. WHO Director-General Summarizes the Outcome of the Emergency Committee Regarding Clusters of Microcephaly and Guillain-Barré Syndrome. Available at: https://www.who.int/news/item/01-02-2016-who-director-general-summarizes-the-outcome-of-the-emergency-committee-regarding-clusters-of-microcephaly-and-guillain-barré-syndrome. Accessed August 18, 2021.

  • 3.

    Heymann DL et al., 2016. Zika virus and microcephaly: why is this situation a PHEIC? Lancet 387: 719721.

  • 4.

    de França GVA et al., 2018. Congenital syndrome associated with Zika virus infection among live births in Brazil: a description of the distribution of reported and confirmed cases in 2015–2016. Epidemiol Serv Saude 27: e2017473.

    • Search Google Scholar
    • Export Citation
  • 5.

    Brasil P et al., 2016. Zika virus infection in pregnant women in Rio de Janeiro. N Engl J Med 375: 23212334.

  • 6.

    Mlakar J et al., 2016. Zika virus associated with microcephaly. N Engl J Med 374: 951958.

  • 7.

    Centro Nacional de Epidemiología, Prevención y Control de Enfermedades, CDC-Perú , 2021. Reporte de Gráfico de Prevalencia Comparada por Años y Causas, 2014–2020. Available at: https://www.dge.gob.pe/salasituacional/sala/index/4_GraficoComparativo/86. Accessed August 18, 2021.

  • 8.

    Aspilcueta-Gho D et al. Infección por Zika en el Perú: de amenaza a problema de salud. 8.

  • 9.

    Centro Nacional de Epidemiología, Prevención y Control de Enfermedades, CDC-Perú , 2021. Reporte de Situación Actual de la Vigilancia Epidemiológica. Available at: https://www.dge.gob.pe/salasituacional/sala/index/salasit_dash/143. Accessed August 18, 2021.

  • 10.

    Fritzell C et al., 2018. Current challenges and implications for dengue, chikungunya and Zika seroprevalence studies worldwide: a scoping review. PLoS Negl Trop Dis 12: e0006533.

    • Search Google Scholar
    • Export Citation
  • 11.

    Wikipedia , 2021. Location of the Province Chincha in Ica.svg. Available at: https://commons.wikimedia.org/wiki/File:Location_of_the_province_Chincha_in_Ica.svg. Accessed July 5, 2021.

  • 12.

    Instituto Nacional de Estadística e Informática , n.d. Resultados Definitivos de los Censos Nacionales 2017. Available at: http://censo2017.inei.gob.pe/resultados-definitivos-de-los-censos-nacionales-2017/. Accessed August 18, 2021.

  • 13.

    Nurtop E et al., 2018. Combination of ELISA screening and seroneutralisation tests to expedite Zika virus seroprevalence studies. Virol J 15: 192.

    • Search Google Scholar
    • Export Citation
  • 14.

    Villarroel PMS et al., 2018. Zika virus epidemiology in Bolivia: a seroprevalence study in volunteer blood donors. PLoS Negl Trop Dis 12: e0006239.

    • Search Google Scholar
    • Export Citation
  • 15.

    Langerak T et al., 2019. Zika virus seroprevalence in urban and rural areas of Suriname, 2017. J Infect Dis 220: 2831.

  • 16.

    Netto EM et al., 2017. High Zika virus seroprevalence in Salvador, northeastern Brazil limits the potential for further outbreaks. MBio 8: e01390e17.

    • Search Google Scholar
    • Export Citation
  • 17.

    Rodriguez-Barraquer I et al., 2019. Impact of preexisting dengue immunity on Zika virus emergence in a dengue endemic region. Science 363: 607610.

    • Search Google Scholar
    • Export Citation
  • 18.

    Zambrana JV et al., 2018. Seroprevalence, risk factor, and spatial analyses of Zika virus infection after the 2016 epidemic in Managua, Nicaragua. Proc Natl Acad Sci USA 115: 92949299.

    • Search Google Scholar
    • Export Citation
  • 19.

    Flamand C et al., 2019. Impact of Zika virus emergence in French Guiana: a large general population seroprevalence survey. J Infect Dis 220: 19151925.

    • Search Google Scholar
    • Export Citation
  • 20.

    Gallian P et al., 2017. Zika virus in asymptomatic blood donors in Martinique. Blood 129: 263266.

  • 21.

    Lajeunesse MJ et al., 2020. Infected mosquitoes have altered behavior to repellents: a systematic review and meta-analysis. J Med Entomol 57: 542550.

    • Search Google Scholar
    • Export Citation
  • 22.

    Vezzani D, 2007. Review: artificial container-breeding mosquitoes and cemeteries: a perfect match. Trop Med Int Health 12: 299313.

  • 23.

    Haby MM et al., 2018. Prevalence of asymptomatic Zika virus infection: a systematic review. Bull World Health Organ 96: 402D413D.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Zika Virus Seroprevalence in Two Districts of Chincha, Ica, Peru: A Cross-Sectional Study

View More View Less
  • 1 Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru;
  • | 2 Unidad de Epidemiología Molecular, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru;
  • | 3 Facultad de Medicina, Universidad Peruana Ciencias Aplicadas, Lima, Peru;
  • | 4 Unité des Virus Émergents, Aix-Marseille University, Marseille, France;
  • | 5 Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany;
  • | 6 Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, Colorado

ABSTRACT.

In 2017, a major outbreak of Zika virus (ZIKV) infection took place in Chincha Province, Peru, where arboviral circulation had never been reported before. We conducted a cross-sectional survey (March–May 2019) in two districts of Chincha Province: Pueblo Nuevo and Chincha Baja. We included residents who were 20 to 40 years old and who had lived in these districts for at least 1 year. Serological testing combined screening with a commercial NS1 protein-based Zika IgG ELISA, and confirmation by a cytopathic effect-based virus neutralization test (VNT). Prevalence ratios (PRs) were calculated using Poisson regression with robust error variance. Four hundred participants, divided equally among districts, were enrolled. Anti-ZIKV IgG ELISA was positive for 42 participants (10.5%) and borderline for 12 (3%). Fifty-two of these 54 samples were confirmed positive by ZIKV VNT (13% of the total population). The Pueblo Nuevo district exhibited a greater ZIKV seroprevalence based on VNT results than the Chincha Baja district (23.5% versus 2.5%), with participants from the Pueblo Nuevo district being 9.4 times more likely to have a positive ZIKV VNT result. Average monthly income greater than the minimum wage and adequate water storage were found to be protective factors (PR, 0.29 and 0.24, respectively). In multivariate analysis, living in the Pueblo Nuevo district and a personal history of fever and rash were strong predictors of ZIKV positivity by VNT. The low ZIKV seroprevalence should prompt health authorities to stimulate interventions to prevent potential future outbreaks. In the Pueblo Nuevo district, the seroprevalence was greater but presumably not sufficient to ensure protective herd immunity.

Author Notes

Address correspondence to Rodrigo Cachay, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru. E-mail: rodrigo.cachay.f@upch.pe

Financial support: This project, including the EuroImmun® anti-Zika Virus ELISA IgG kits and the UVE in-house ZIKV Virus Neutralization Test, was supported by the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement N.734548. We also thank the Faculty of Medicine Alberto Hurtado, Universidad Peruana Cayetano Heredia for its partial support to cover the publication cost.

Authors’ addresses: Rodrigo Cachay, Alvaro Schwalb, J. Gonzalo Acevedo-Rodriguez, Humberto Guerra, and Eduardo Gotuzzo, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru, E-mails: rodrigo.cachay.f@upch.pe, alvaro.schwalb@upch.pe, juan.acevedo@upch.pe, humberto.guerra@upch.pe, and eduardo.gotuzzo@upch.pe. Xiomara Merino and Michael Talledo, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru, and Unidad de Epidemiología Molecular, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru, E-mails: xiiomyjean@gmail.com and michaeltalledo@yahoo.com. Luis Suarez-Ognio, Facultad de Medicina, Universidad Peruana Ciencias Aplicadas, Lima, Peru, E-mail: luissurezognio@gmail.com. Laura Pezzi and Xavier de Lamballerie, Unité des Virus Émergents, Aix-Marseille University, Marseille, France, E-mails: laura.pezzi3@studio.unibo.it and xavier.de-lamballerie@univ-amu.fr. Thomas Jaenisch, Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany, and Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, CO, E-mail: thomas.jaenisch@uni-heidelberg.de.

Save