• 1.

    Ichiyama S, Shimokata K, Takeuchi J, 1993. Comparative study of a biphasic culture system (Roche MB check system) with a conventional egg medium for recovery of mycobacteria. Aichi Mycobacteriosis Research Group. Tuber Lung Dis 74: 338341.

    • Search Google Scholar
    • Export Citation
  • 2.

    Morgan MA, Horstmeier CD, DeYoung DR, Roberts GD, 1983. Comparison of a radiometric method (BACTEC) and conventional culture media for recovery of mycobacteria from smear-negative specimens. J Clin Microbiol 18: 384388.

    • Search Google Scholar
    • Export Citation
  • 3.

    Rachow A et al., 2011. Rapid and accurate detection of Mycobacterium tuberculosis in sputum samples by Cepheid Xpert MTB/RIF assay–a clinical validation study. PLoS One 6: e20458.

    • Search Google Scholar
    • Export Citation
  • 4.

    Cruciani M, Scarparo C, Malena M, Bosco O, Serpelloni G, Mengoli C, 2004. Meta-analysis of BACTEC MGIT 960 and BACTEC 460 TB, with or without solid media, for detection of mycobacteria. J Clin Microbiol 42: 23212325.

    • Search Google Scholar
    • Export Citation
  • 5.

    Steingart KR, Sohn H, Schiller I, Kloda LA, Boehme CC, Pai M, Dendukuri N, 2013. Xpert(R) MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev 2014: CD009593.

    • Search Google Scholar
    • Export Citation
  • 6.

    (FDA) UFaDA , 2013. FDA permits marketing of first US test labeled for simultaneous detection of tuberculosis bacteria and resistance to the antibiotic rifampin. Clin Infect Dis 57: i.

    • Search Google Scholar
    • Export Citation
  • 7.

    World Health Organization , 2011. Automated Real-Time Nucleic Acid Amplification Technology for Rapid and Simultaneous Detection of Tuberculosis and Rifampicin Resistance: Xpert MTB/RIF System Policy Statement. Geneva, Switzerland: WHO.

    • Search Google Scholar
    • Export Citation
  • 8.

    Bo & ehme CC et al., 2010. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363: 10051015.

  • 9.

    Centers for Disease Control and Prevention , 2013. Availability of an assay for detecting Mycobacterium tuberculosis, including rifampin-resistant strains, and considerations for its use - United States, 2013. MMWR Morb Mortal Wkly Rep 62: 821827.

    • Search Google Scholar
    • Export Citation
  • 10.

    Espy MJ et al., 2006. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev 19: 165256.

  • 11.

    Babafemi EO, Cherian BP, Banting L, Mills GA, Ngianga K 2nd, 2017. Effectiveness of real-time polymerase chain reaction assay for the detection of Mycobacterium tuberculosis in pathological samples: a systematic review and meta-analysis. Syst Rev 6: 215.

    • Search Google Scholar
    • Export Citation
  • 12.

    Flores LL, Pai M, Colford JM Jr, Riley LW, 2005. In-house nucleic acid amplification tests for the detection of Mycobacterium tuberculosis in sputum specimens: meta-analysis and meta-regression. BMC Microbiol 5: 55.

    • Search Google Scholar
    • Export Citation
  • 13.

    Wei Z et al., 2019. Diagnostic accuracy of in-house real-time PCR assay for Mycobacterium tuberculosis: a systematic review and meta-analysis. BMC Infect Dis 19: 701.

    • Search Google Scholar
    • Export Citation
  • 14.

    Vadwai V, Boehme C, Nabeta P, Shetty A, Alland D, Rodrigues C, 2011. Xpert MTB/RIF: a new pillar in diagnosis of extrapulmonary tuberculosis? J Clin Microbiol 49: 25402545.

    • Search Google Scholar
    • Export Citation
  • 15.

    Denkinger CM, Schumacher SG, Boehme CC, Dendukuri N, Pai M, Steingart KR, 2014. Xpert MTB/RIF assay for the diagnosis of extrapulmonary tuberculosis: a systematic review and meta-analysis. Eur Respir J 44: 435446.

    • Search Google Scholar
    • Export Citation
  • 16.

    Kohli M, Schiller I, Dendukuri N, Dheda K, Denkinger CM, Schumacher SG, Steingart KR, 2018. Xpert((R)) MTB/RIF assay for extrapulmonary tuberculosis and rifampicin resistance. Cochrane Database Syst Rev 8: CD012768.

    • Search Google Scholar
    • Export Citation
  • 17.

    Naaktgeboren CA, Bertens LC, van Smeden M, de Groot JA, Moons KG, Reitsma JB, 2013. Value of composite reference standards in diagnostic research. BMJ 347: f5605.

    • Search Google Scholar
    • Export Citation
  • 18.

    Nathavitharana RR et al., 2019. Guidance for studies evaluating the accuracy of tuberculosis triage tests. J Infect Dis 220: S116S125.

  • 19.

    Tomaz APO, Raboni SM, Kussen GMB, da Silva Nogueira K, Lopes Ribeiro CE, Costa LMD, 2021. The Xpert(R) MTB/RIF diagnostic test for pulmonary and extrapulmonary tuberculosis in immunocompetent and immunocompromised patients: benefits and experiences over 2 years in different clinical contexts. PLoS One 16: e0247185.

    • Search Google Scholar
    • Export Citation
  • 20.

    Savelkoul PH, Catsburg A, Mulder S, Oostendorp L, Schirm J, Wilke H, van der Zanden AG, Noordhoek GT, 2006. Detection of Mycobacterium tuberculosis complex with Real Time PCR: comparison of different primer-probe sets based on the IS6110 element. J Microbiol Methods 66: 177180.

    • Search Google Scholar
    • Export Citation
  • 21.

    Zhong H, Liu Y, Talmor M, Wu B, Hui P, 2013. Deparaffinization and lysis by hydrothermal pressure (pressure cooking) coupled with chaotropic salt column purification: a rapid and efficient method of DNA extraction from formalin-fixed paraffin-embedded tissue. Diagn Mol Pathol 22: 5258.

    • Search Google Scholar
    • Export Citation
  • 22.

    Zeka AN, Tasbakan S, Cavusoglu C, 2011. Evaluation of the GeneXpert MTB/RIF assay for rapid diagnosis of tuberculosis and detection of rifampin resistance in pulmonary and extrapulmonary specimens. J Clin Microbiol 49: 41384141.

    • Search Google Scholar
    • Export Citation
  • 23.

    Budvytiene I, Banaei N, 2020. Simple processing of formalin-fixed paraffin-embedded tissue for accurate testing with the Xpert MTB/RIF assay. J Clin Microbiol 58:e01905-19.

    • Search Google Scholar
    • Export Citation
  • 24.

    Nja, u AN, Gakinya SM, Sayed S, Moloo Z, 2019. Xpert((R)) MTB/RIF assay on formalin-fixed paraffin-embedded tissues in the diagnosis of extrapulmonary tuberculosis. Afr J Lab Med 8: 748.

    • Search Google Scholar
    • Export Citation
  • 25.

    Allahyartorkaman M, Mirsaeidi M, Hamzehloo G, Amini S, Zakiloo M, Nasiri MJ, 2019. Low diagnostic accuracy of Xpert MTB/RIF assay for extrapulmonary tuberculosis: a multicenter surveillance. Sci Rep 9: 18515.

    • Search Google Scholar
    • Export Citation
  • 26.

    Kohli M, Schiller I, Dendukuri N, Yao M, Dheda K, Denkinger CM, Schumacher SG, Steingart KR, 2021. Xpert MTB/RIF Ultra and Xpert MTB/RIF assays for extrapulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev 1: CD012768.

    • Search Google Scholar
    • Export Citation
  • 27.

    Zifodya JS et al., 2021. Xpert Ultra versus Xpert MTB/RIF for pulmonary tuberculosis and rifampicin resistance in adults with presumptive pulmonary tuberculosis. Cochrane Database Syst Rev 2: CD009593.

    • Search Google Scholar
    • Export Citation
  • 28.

    Hoel IM, Syre H, Skarstein I, Mustafa T, 2020. Xpert MTB/RIF ultra for rapid diagnosis of extrapulmonary tuberculosis in a high-income low-tuberculosis prevalence setting. Sci Rep 10: 13959.

    • Search Google Scholar
    • Export Citation
  • 29.

    Schiller I, van Smeden M, Hadgu A, Libman M, Reitsma JB, Dendukuri N, 2016. Bias due to composite reference standards in diagnostic accuracy studies. Stat Med 35: 14541470.

    • Search Google Scholar
    • Export Citation
  • 30.

    Tyagi S, Sharma N, Tyagi JS, Haldar S, 2017. Challenges in pleural tuberculosis diagnosis: existing reference standards and nucleic acid tests. Future Microbiol 12: 12011218.

    • Search Google Scholar
    • Export Citation
  • 31.

    World Health Organization , 2020. Global Tuberculosis Report 2020. Geneva, Switzerland: WHO.

Past two years Past Year Past 30 Days
Abstract Views 556 471 31
Full Text Views 67 48 0
PDF Downloads 93 68 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Increased Detection of Mycobacterium tuberculosis Disease Using a Tissue-Based Laboratory-Developed Polymerase Chain Reaction Assay Compared to Standard Diagnostics

Natalie A. MackowDepartment of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut;

Search for other papers by Natalie A. Mackow in
Current site
Google Scholar
PubMed
Close
,
Rita Abi-RaadDepartment of Pathology, Yale University School of Medicine, New Haven, Connecticut;

Search for other papers by Rita Abi-Raad in
Current site
Google Scholar
PubMed
Close
,
Christopher A. KerantzasDepartment of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut;

Search for other papers by Christopher A. Kerantzas in
Current site
Google Scholar
PubMed
Close
,
Pei HuiDepartment of Pathology, Yale University School of Medicine, New Haven, Connecticut;

Search for other papers by Pei Hui in
Current site
Google Scholar
PubMed
Close
,
Maricar MalinisSection of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut

Search for other papers by Maricar Malinis in
Current site
Google Scholar
PubMed
Close
, and
Marwan M. AzarSection of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut

Search for other papers by Marwan M. Azar in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT.

Standard diagnostics for Mycobacterium tuberculosis (MTB) including acid-fast bacilli (AFB) smear and culture, and Xpert MTB/RIF real-time Polymerase Chain Reaction (RT-PCR; Xpert) have variable sensitivity and/or long turnaround times. We describe the clinical performance of a laboratory-developed tissue-based MTB PCR compared with AFB culture and Xpert using a composite reference standard (CRS). Over an 8-year period, MTB PCR was performed on pulmonary, pleural, or lymph node specimens for 36 patients. Of these, 11 met criteria for confirmed/probable MTB using CRS. MTB PCR was positive in 100% (11/11), AFB cultures were positive in 73% (8/11), and Xpert in 0% (0/4). MTB PCR was negative in 25 cases of “No MTB” (100% specific). The MTB PCR assay resulted faster than positive AFB culture (mean time 4.3 versus 21.2 days). Tissue-based MTB PCR was associated with increased and rapid detection of MTB, improving clinical sensitivity in strongly suspected MTB cases.

    • Supplemental Materials (PDF 77 KB)

Author Notes

Address correspondence to Natalie A. Mackow, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510. E-mail: mackowna07@gmail.com

Authors’ addresses: Natalie A. Mackow, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, E-mail: mackowna07@gmail.com. Rita Abi-Raad and Pei Hui, Department of Pathology, Yale University School of Medicine, New Haven, CT, E-mails: rita.abiraad@yale.edu and pei.hui@yale.edu. Christopher A. Kerantzas, Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, E-mail: christopher.kerantzas@yale.edu. Maricar Malinis and Marwan M. Azar, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, E-mails: maricar.malinis@yale.edu and marwan.azar@yale.edu.

Save