• 1.

    Luce-Fedrow A, Lehman ML, Kelly DJ, Mullins K, Maina AN, Stewart RL, Ge H, John HS, Jiang J, Richards AL, 2018. A review of scrub typhus (Orientia tsutsugamushi and related organisms): then, now, and tomorrow. Trop Med Infect Dis 3: 8.

    • Search Google Scholar
    • Export Citation
  • 2.

    Peter JV, Sudarsan TI, Prakash JA, Varghese GM, 2015. Severe scrub typhus infection: clinical features, diagnostic challenges and management. World J Crit Care Med 4: 244250.

    • Search Google Scholar
    • Export Citation
  • 3.

    Taylor AJ, Paris DH, Newton PN, 2015. A systematic review of mortality from untreated scrub typhus (Orientia tsutsugamushi). PLoS Negl Trop Dis 9: e0003971.

    • Search Google Scholar
    • Export Citation
  • 4.

    WHO , 1999. WHO Recommended Surveillance Standards, 2nd ed. Geneva, Switzerland: World Health Organization.

  • 5.

    Sonthayanon P et al., 2006. Rapid diagnosis of scrub typhus in rural Thailand using polymerase chain reaction. Am J Trop Med Hyg 75: 10991102.

    • Search Google Scholar
    • Export Citation
  • 6.

    Paris DH, Blacksell SD, Newton PN, Day NP, 2008. Simple, rapid and sensitive detection of Orientia tsutsugamushi by loop-isothermal DNA amplification. Trans R Soc Trop Med Hyg 102: 12391246.

    • Search Google Scholar
    • Export Citation
  • 7.

    Koh GC, Maude RJ, Paris DH, Newton PN, Blacksell SD, 2010. Diagnosis of scrub typhus. Am J Trop Med Hyg 82: 368370.

  • 8.

    Ro HJ, Lee H, Park EC, Lee CS, Il Kim S, Jun S, 2018. Ultrastructural visualization of Orientia tsutsugamushi in biopsied eschars and monocytes from scrub typhus patients in South Korea. Sci Rep 8: 17373.

    • Search Google Scholar
    • Export Citation
  • 9.

    Blacksell SD, Jenjaroen K, Phetsouvanh R, Tanganuchitcharnchai A, Phouminh P, Phongmany S, Day NP, Newton PN, 2010. Accuracy of rapid IgM-based immunochromatographic and immunoblot assays for diagnosis of acute scrub typhus and murine typhus infections in Laos. Am J Trop Med Hyg 83: 365369.

    • Search Google Scholar
    • Export Citation
  • 10.

    Park SW, Lee CK, Kwak YG, Moon C, Kim BN, Kim ES, Kang JM, Lee CS, 2010. Antigenic drift of Orientia tsutsugamushi in South Korea as identified by the sequence analysis of a 56-kDa protein-encoding gene. Am J Trop Med Hyg 83: 930935.

    • Search Google Scholar
    • Export Citation
  • 11.

    Krogh A, Larsson B, von Heijne G, Sonnhammer ELL, 2001. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol 305: 567580.

    • Search Google Scholar
    • Export Citation
  • 12.

    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 33893402.

    • Search Google Scholar
    • Export Citation
  • 13.

    Sachdeva G, Kumar K, Jain P, Ramachandran S, 2004. SPAAN: a software program for prediction of adhesins and adhesin-like proteins using neural networks. Bioinformatics 21: 483491.

    • Search Google Scholar
    • Export Citation
  • 14.

    He Y, Xiang Z, Mobley HLT, 2010. Vaxign: the first web-based vaccine design program for reverse vaccinology and applications for vaccine development. J Biomed Biotechnol 2010: 297505.

    • Search Google Scholar
    • Export Citation
  • 15.

    Doytchinova IA, Flower DR, 2007. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8: 4.

    • Search Google Scholar
    • Export Citation
  • 16.

    Koczula KM, Gallotta A, 2016. Lateral flow assays. Essays Biochem 60: 111120.

  • 17.

    Kim YJ et al., 2016. Clinical evaluation of rapid diagnostic test kit for scrub typhus with improved performance. J Korean Med Sci 31: 11901196.

    • Search Google Scholar
    • Export Citation
  • 18.

    Ha NY, Kim Y, Min CK, Kim HI, Yen NTH, Choi MS, Kang JS, Kim YS, Cho NH, 2017. Longevity of antibody and T-cell responses against outer membrane antigens of Orientia tsutsugamushi in scrub typhus patients. Emerg Microbes Infect 6: e116.

    • Search Google Scholar
    • Export Citation
  • 19.

    Kim DM, Lee YM, Back JH, Yang TY, Lee JH, Song HJ, Shim SK, Hwang KJ, Park MY, 2010. A serosurvey of Orientia tsutsugamushi from patients with scrub typhus. Clin Microbiol Infect 16: 447451.

    • Search Google Scholar
    • Export Citation
  • 20.

    Sengupta M, Anandan S, Daniel D, Prakash JA, 2015. Scrub typhus seroprevalence in healthy Indian population. J Clin Diagn Res 9: DM01DM02.

 
 
 
 

 

 
 
 

 

 

 

 

 

 

Identification of a Novel Antigen for Serological Diagnosis of Scrub Typhus

View More View Less
  • 1 Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea;
  • | 2 Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea;
  • | 3 Department of Bio-Analysis Science, University of Science & Technology, Daejeon, Republic of Korea,
  • | 4 Manufacture Business Division Curebio Ltd, Seoul, Republic of Korea,
  • | 5 Center for Research Equipment, Korea Basic Science Institute, Cheongju, Republic of Korea;
  • | 6 Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea;
  • | 7 Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea

ABSTRACT.

Scrub typhus is an acute infectious disease caused by the bacterium Orientia tsutsugamushi, which is widely distributed in northern, southern, and eastern Asia. Early diagnosis is essential because the average case fatality rate is usually >10% but can be as high as 45% if antimicrobial treatment is delayed. Although an O. tsutsugamushi 56-kDa type-specific antigen (TSA) is commonly used for serological diagnosis of scrub typhus, the 56-kDa TSA shows variations among O. tsutsugamushi strains, which may lead to poor diagnostic results. Therefore, the discovery of new antigenic proteins may improve diagnostic accuracy. In this study, we identified an O. tsutsugamushi 27 kDa antigen through an immunoinformatic approach and verified its diagnostic potential using patient samples. Compared with the O. tsutsugamushi 56-kDa antigen, the new 27-kDa antigen showed better diagnostic specificity with similar diagnostic sensitivity. Therefore, the O. tsutsugamushi 27-kDa antigen shows potential as a novel serological diagnostic antigen for scrub typhus, providing higher diagnostic accuracy for O. tsutsugamushi than the 56-kDa antigen.

    • Supplemental Materials (PDF 1,548 KB)

Author Notes

Address correspondence to Edmond Changkyun Park or Hye-Yeon Kim, Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Republic of Korea. E-mails: edpark@kbsi.re.kr or hyeyeon@kbsi.re.kr

These authors contributed equally to this work.

Authors’ addresses: Wooyoung Kim, Sang-Yeop Lee, Seung Il Kim, Sun Cheol Park, Hye-Yeon Kim, and Edmond Changkyun Park, Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea, E-mails: kwy91@kbsi.re.kr, yop0214@gmail.com, ksi@kbsi.re.kr, psc1234@kbsi.re.kr, hyeyeon@kbsi.re.kr, and edpark@kbsi.re.kr. In-Kook Sohng, Manufacture Business Division Curebio Ltd, Seoul, Republic of Korea, E-mail: iksohng@gmail.com. Sangmi Jun, Center for Research Equipment, Korea Basic Science Institute, Cheongju, Republic of Korea, E-mail: smjun@kbsi.re.kr. Chang-Seop Lee, Department of Internal Medicine, Chonbuk National University Medical School, Jeonju 54986, Republic of Korea, E-mail: lcsmd@jbnu.ac.kr.

Save