• 1.

    Petersen LR, Powers AM, 2016. Chikungunya: epidemiology. F1000 Res 5: 7171.1.

  • 2.

    Diaz-Quinonez JA et al., 2015. Complete genome sequences of chikungunya virus strains isolated in Mexico: first detection of imported and autochthonous cases. Genome Announc 3: e00300-15.

    • Search Google Scholar
    • Export Citation
  • 3.

    Secretaría de Salud , 2015. Epidemiological Bulletin for Week 52 of 2015. Available at: https://www.gob.mx/cms/uploads/attachment/file/50233/sem52.pdf. Accessed April 18, 2021.

  • 4.

    Secretaría de Salud , 2019. Epidemiological Bulletin for Week 52 of 2019. Available at: https://www.gob.mx/cms/uploads/attachment/file/522437/BSEMANAL_52.pdf. Accessed April 18, 2021.

  • 5.

    Secretaría de Salud , 2020. Epidemiological Bulletin for Week 53 of 2020. Available at: https://www.gob.mx/cms/uploads/attachment/file/614743/sem53.pdf. Accessed April 18, 2021.

  • 6.

    Nunez-Avellaneda D et al., 2021. Co-circulation of all four dengue viruses and Zika virus in Guerrero, Mexico, 2019. Vector Borne Zoonotic Dis 21: 458–465.

    • Search Google Scholar
    • Export Citation
  • 7.

    Laredo-Tiscareno SV et al., 2018. Arbovirus surveillance near the Mexico-U.S. border: isolation and sequence analysis of chikungunya virus from patients with dengue-like symptoms in Reynosa, Tamaulipas. Am J Trop Med Hyg 99: 191194.

    • Search Google Scholar
    • Export Citation
  • 8.

    Beaty B, Calisher C, Shope R, 1995. Diagnostic procedures for viral, rickettsial, and chlamydial infections. Lennette E, Lennette D, Lennette E, eds. Arboviruses. Washington, DC: American Public Health Association, 189–212.

  • 9.

    World Health Organization , Regional Office for South-East Asia, 2008. Guidelines on Clinical Management of Chikungunya Fever. Available at: https://apps.who.int/iris/handle/10665/205178. Accessed April 4, 2021.

  • 10.

    Tan LK et al., 2019. Flavivirus cross-reactivity to dengue nonstructural protein 1 antigen detection assays. Diagnostics (Basel) 10: 11.

  • 11.

    Secretaría de Salud , 2018. Epidemiological Bulletin for Week 52 of 2018. Available at: https://www.gob.mx/cms/uploads/attachment/file/425972/sem52.pdf. Accessed April 18, 2021.

  • 12.

    Paixao ES, Teixeira MG, Rodrigues LC, 2018. Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases. BMJ Glob Health 3 (Suppl 1 ):e000530.

    • Search Google Scholar
    • Export Citation
  • 13.

    Ribeiro GS, Hamer GL, Diallo M, Kitron U, Ko AI, Weaver SC, 2020. Influence of herd immunity in the cyclical nature of arboviruses. Curr Opin Virol 40: 110.

    • Search Google Scholar
    • Export Citation
  • 14.

    Danis-Lozano R et al., 2017. Clinical characterization of acute and convalescent illness of confirmed chikungunya cases from Chiapas, S. Mexico: a cross sectional study. PLoS One 12: e0186923.

    • Search Google Scholar
    • Export Citation
  • 15.

    Cortes-Escamilla A, Lopez-Gatell H, Sanchez-Aleman MA, Hegewisch-Taylor J, Hernandez-Avila M, Alpuche-Aranda CM, 2018. The hidden burden of chikungunya in central Mexico: results of a small-scale serosurvey. Salud Publica Mex 60: 6370.

    • Search Google Scholar
    • Export Citation
  • 16.

    Eligio-Garcia L et al., 2020. Co-infection of Dengue, Zika and Chikungunya in a group of pregnant women from Tuxtla Gutierrez, Chiapas: preliminary data. 2019. PLoS Negl Trop Dis 14: e0008880.

    • Search Google Scholar
    • Export Citation
  • 17.

    Kautz TF et al., 2015. Chikungunya virus as cause of febrile illness outbreak, Chiapas, Mexico, 2014. Emerg Infect Dis 21: 20702073.

  • 18.

    de la Cruz-Castro IX et al., 2020. Factors associated with chikungunya relapse in Acapulco, Mexico: a cross-sectional study. Vector Borne Zoonotic Dis 20: 782787.

    • Search Google Scholar
    • Export Citation
  • 19.

    Dzul-Manzanilla F et al., 2015. Arbovirus surveillance and first report of chikungunya virus in wild populations of Aedes aegypti from Guerrero, Mexico. J Am Mosq Control Assoc 31: 275277.

    • Search Google Scholar
    • Export Citation
  • 20.

    Cigarroa-Toledo N et al., 2016. Chikungunya virus in febrile humans and Aedes aegypti mosquitoes, Yucatan, Mexico. Emerg Infect Dis 22: 18041807.

    • Search Google Scholar
    • Export Citation
 
 
 
 

 

 
 
 

 

 

 

 

 

 

Chikungunya in Guerrero, Mexico, 2019 and Evidence of Gross Underreporting in the Region

View More View Less
  • 1 College of Veterinary Medicine, Iowa State University, Ames, Iowa;
  • | 2 National Institute of Medical Sciences and Nutrition Salvador Zubirán, Experimental Pathology Section, Ciudad de México, México;
  • | 3 Laboratorio de Virología e Inmunovirología, Depto. Microbiología Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional, Ciudad de México, México;
  • | 4 Laboratorio de Arbovirologia, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi,” Universidad Autonoma de Yucatan, Merida, Yucatan, Mexico;
  • | 5 Laboratorio de Microbiología Médica, Universidad Autonoma de Guerrero, Chilpancingo, Guerrero, México;
  • | 6 College of Liberal Arts and Sciences, Iowa State University, Ames, Iowa

ABSTRACT.

The local public health authorities reported nine cases of chikungunya in Mexico in 2019, none of which occurred in Guerrero, a coastal state in the southwest. To test the hypothesis that chikungunya is grossly underreported in Mexico, acute sera were collected from 639 febrile patients from low-income households in Guerrero in 2019 and serologically assayed for chikungunya virus (CHIKV). Analysis of the sera by plaque reduction neutralization test revealed that 181 (28.3%) patients were seropositive for CHIKV. To identify patients with acute CHIKV infections, a subset of serum samples were tested for CHIKV-specific IgM by ELISA. Serum samples from 21 of 189 (11.1%) patients were positive. These patients met the chikungunya case definition established by the WHO. In conclusion, we provide evidence that CHIKV remains an important public health problem in Mexico and that the true number of cases is severely underestimated.

Author Notes

Address correspondence to Bradley J. Blitvich, 2116 Veterinary Medicine, Iowa State University, Ames, IA 50011. E-mail: blitvich@iastate.edu

Financial support: This study was supported by a postdoctoral scholarship from the from the Consejo Nacional de Ciencia y Tecnología of Mexico (scholarship no. 406531) and intramural funds provided by the College of Veterinary Medicine at Iowa State University.

Authors’ addresses: Daniel Nunez-Avellaneda, Chandra Tangudu, and Bradley J. Blitvich, College of Veterinary Medicine, Iowa State University, Ames, IA, E-mails: dnunez@iastate.edu, ctangudu@iastate.edu, and blitvich@iastate.edu. Jacqueline Barrios-Palacios, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Experimental Pathology Section, Ciudad de México, México, E-mail: 18477@uagro.mx. Ma. Isabel Salazar, Laboratorio de Virología e Inmunovirología, Depto. Microbiología Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional, Ciudad de México, México, E-mail: isalazarsan@yahoo.com. Carlos Machain-Williams, Laboratorio de Arbovirologia, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi,” Universidad Autonoma de Yucatan, Merida, Yucatan, Mexico, E-mail: carlos.machain@uady.mx. Jonathan Cisneros-Pano, Laboratorio de Microbiología Médica, Universidad Autonoma de Guerrero, Chilpancingo, Guerrero, México, E-mail: escorpion_239@hotmail.com. Lauren A. McKeen, College of Liberal Arts and Sciences, Iowa State University, Ames, IA, E-mail: lamckeen@iastate.edu.

Save