• 1.

    World Health Organization , 2019. World Malaria Report 2019. Geneva, Switzerland: WHO.

  • 2.

    World Health Organization , 2012. World Malaria Report 2012. Geneva, Switzerland: WHO.

  • 3.

    Bhatt S et al., 2015. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526: 207211.

  • 4.

    Degefa T, Yewhalaw D, Zhou G, Lee MC, Atieli H, Githeko AK, Yan G, 2017. Indoor and outdoor malaria vector surveillance in western Kenya: implications for better understanding of residual transmission. Malar J 16: 443.

    • Search Google Scholar
    • Export Citation
  • 5.

    The malERA Refresh Consultative Panel on Insecticide and Drug Resistance, 2017. malERA: An updated research agenda for insecticide and drug resistance in malaria elimination and eradication. PLoS Med 14: e1002450.

  • 6.

    Moiroux N, Gomez MB, Pennetier C, Elanga E, Djènontin A, Chandre F, Djègbé I, Guis H, Corbel V, 2012. Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis 206: 16221629.

    • Search Google Scholar
    • Export Citation
  • 7.

    Mulamba C, Riveron JM, Ibrahim SS, Irving H, Barnes KG, Mukwaya LG, Birungi J, Wondji CS, 2014. Widespread pyrethroid and DDT resistance in the major malaria vector Anopheles funestus in East Africa is driven by metabolic resistance mechanisms. PLoS One 9: e110058.

    • Search Google Scholar
    • Export Citation
  • 8.

    Wanjala CL, Mbugi JP, Ototo E, Gesuge M, Afrane YA, Atieli HE, Zhou G, Githeko AK, Yan G, 2015. Pyrethroid and DDT resistance and organophosphate susceptibility among Anopheles spp. mosquitoes, western Kenya. Emerg Infect Dis 21: 21782181.

    • Search Google Scholar
    • Export Citation
  • 9.

    The malERA Refresh Consultative Panel on Tools for Malaria Elimination, 2017. An updated research agenda for diagnostics, drugs, vaccines, and vector control in malaria elimination and eradication. PLoS Med 14: e1002455.

  • 10.

    Benelli G, Beier JC, 2017. Current vector control challenges in the fight against malaria. Acta Trop 174: 9196.

  • 11.

    Tizifa TA, Kabaghe AN, McCann RS, van den Berg H, Van Vugt M, Phiri KS, 2018. Prevention efforts for malaria. Curr Trop Med Rep 5: 4150.

  • 12.

    Protopopoff N et al., 2018. Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroid-resistant mosquitoes: a cluster, randomised controlled, two-by-two factorial design trial. Lancet 391: 15771588.

    • Search Google Scholar
    • Export Citation
  • 13.

    Achee NL et al., 2019. Alternative strategies for mosquito-borne arbovirus control. PLoS Negl Trop Dis 13: e0006822.

  • 14.

    Pinder M et al., 2015. Efficacy of indoor residual spraying with dichlorodiphenyltrichloroethane against malaria in Gambian communities with high usage of long-lasting insecticidal mosquito nets: a cluster-randomised controlled trial. Lancet 385: 14361446.

    • Search Google Scholar
    • Export Citation
  • 15.

    Sluydts V et al., 2016. Efficacy of topical mosquito repellent (picaridin) plus long-lasting insecticidal nets versus long-lasting insecticidal nets alone for control of malaria: a cluster randomised controlled trial. Lancet Infect Dis 16: 11691177.

    • Search Google Scholar
    • Export Citation
  • 16.

    Qualls WA, Müller GC, Traore SF, Traore MM, Arheart KL, Doumbia S, Schlein Y, Kravchenko VD, Xue RD, Beier JC, 2015. Indoor use of attractive toxic sugar bait (ATSB) to effectively control malaria vectors in Mali, West Africa. Malar J 14: 301.

    • Search Google Scholar
    • Export Citation
  • 17.

    Afrane YA, Mweresa NG, Wanjala CL, Gilbreath TM III, Zhou G, Lee MC, Githeko AK, Yan G, 2016. Evaluation of long-lasting microbial larvicide for malaria vector control in Kenya. Malar J 15: 577.

    • Search Google Scholar
    • Export Citation
  • 18.

    Fillinger U, Ndenga B, Githeko A, Lindsay SW, 2009. Integrated malaria vector control with microbial larvicides and insecticide-treated nets in western Kenya: a controlled trial. Bull World Health Organ 87: 655665.

    • Search Google Scholar
    • Export Citation
  • 19.

    Shaw WR, Marcenac P, Childs LM, Buckee CO, Baldini F, Sawadogo SP, Dabiré RK, Diabaté A, Catteruccia F, 2016. Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development. Nat Commun 7: 11772.

    • Search Google Scholar
    • Export Citation
  • 20.

    Homan T et al., 2016. The effect of mass mosquito trapping on malaria transmission and disease burden (SolarMal): a stepped-wedge cluster-randomised trial. Lancet 388: 11931201.

    • Search Google Scholar
    • Export Citation
  • 21.

    Dambach P, Schleicher M, Stahl H-C, Traoré I, Becker N, Kaiser A, Sié A, Sauerborn R, 2016. Routine implementation costs of larviciding with Bacillus thuringiensis israelensis against malaria vectors in a district in rural Burkina Faso. Malar J 15: 380.

    • Search Google Scholar
    • Export Citation
  • 22.

    Zhou G, Afrane YA, Vardo-Zalik AM, Atieli H, Zhong D, Wamae P, Himeidan YE, Minakawa N, Githeko AK, Yan G, 2011. Changing patterns of malaria epidemiology between 2002 and 2010 in western Kenya: the fall and rise of malaria. PLoS One 6: e20318.

    • Search Google Scholar
    • Export Citation
  • 23.

    Killeen GF et al., 2017. Developing an expanded vector control toolbox for malaria elimination. BMJ Glob Health 2: e000211.

  • 24.

    Ndenga BA, Mulaya NL, Musaki SK, Shiroko JN, Dongus S, Fillinger U, 2016. Malaria vectors and their blood-meal sources in an area of high bed net ownership in the western Kenya highlands. Malar J 15: 76.

    • Search Google Scholar
    • Export Citation
  • 25.

    Obala AA, Kutima HL, Nyamogoba HD, Mwangi AW, Simiyu CJ, Magak GN, Khwa-Otsyula BO, Ouma JH, 2012. Anopheles gambiae and Anopheles arabiensis population densities and infectivity in Kopere village, western Kenya. J Infect Devel Countr 6: 637643.

    • Search Google Scholar
    • Export Citation
  • 26.

    Githeko AK, Service MW, Mbogo CM, Atieli FK, Jurna FO, 1994. Origin of blood meals in indoor and outdoor resting malaria vectors in western Kenya. Acta Trop 58: 307316.

    • Search Google Scholar
    • Export Citation
  • 27.

    Awine T, Malm K, Bart-Plange C, Silal SP, 2017. Towards malaria control and elimination in Ghana: challenges and decision making tools to guide planning. Glob Health Action 10: 1381471.

    • Search Google Scholar
    • Export Citation
  • 28.

    Taffese HS, Hemming-Schroeder E, Koepfli C, Tesfaye G, Lee MC, Kazura J, Yan G, Zhou G, 2018. Malaria epidemiology and interventions in Ethiopia from 2001 to 2016. Infect Dis Poverty 7: 103.

    • Search Google Scholar
    • Export Citation
  • 29.

    Zhou G, Lee M-C, Githeko AK, Atieli HE, Yan G, 2016. Insecticide-treated net campaign and malaria transmission in western Kenya: 2003–2015. Front Public Health 4: 153.

    • Search Google Scholar
    • Export Citation
  • 30.

    Katureebe A et al., 2016. Measures of malaria burden after long-lasting insecticidal net distribution and indoor residual spraying at three sites in Uganda: a prospective observational study. PLoS Med 13: e1002167.

    • Search Google Scholar
    • Export Citation
  • 31.

    Curtis CF, Maxwell CA, Magesa SM, Rwegoshora RT, Wilkes TJ, 2006. Insecticide-treated bed-nets for malaria mosquito control. J Am Mosq Control Assoc 22: 501506.

    • Search Google Scholar
    • Export Citation
  • 32.

    Carnevale P, Gay F, 2019. Insecticide-treated mosquito nets. Methods Mol Biol 2013: 221232.

  • 33.

    Tangena JA et al., 2020. Indoor residual spraying for malaria control in sub-Saharan Africa 1997 to 2017: an adjusted retrospective analysis. Malar J 19: 150.

    • Search Google Scholar
    • Export Citation
  • 34.

    Choi L, Pryce J, Garner P, 2019. Indoor residual spraying for preventing malaria in communities using insecticide-treated nets. Cochrane Database Syst Rev 5: CD012688.

    • Search Google Scholar
    • Export Citation
  • 35.

    USAID/PMI, 2018. Kenya Malaria Operational Plan FY 2019. Available at: https://www.pmi.gov/where-we-work/kenya/. Accessed March 5, 2020.

  • 36.

    USAID/PMI, 2017. Uganda Malaria Operational Plan FY 2018. Available at: https://www.pmi.gov/where-we-work/kenya/. Accessed March 5, 2020.

  • 37.

    USAID/PMI, 2018. Ethiopia Malaria Operational Plan FY 2019. Available at: https://www.pmi.gov/where-we-work/kenya/. Accessed March 5, 2020.

  • 38.

    Bothwell LE, Greene JA, Podolsky SH, Jones DS, 2016. Assessing the gold standard – lessons from the history of RCTs. N Engl J Med 374: 21752181.

    • Search Google Scholar
    • Export Citation
  • 39.

    Chow S-C, 2014. Adaptive clinical trial design. Annu Rev Med 65: 405415.

  • 40.

    Bhatt DL, Mehta C, 2016. Adaptive designs for clinical trials. N Engl J Med 375: 6574 Rev.

  • 41.

    Huskins WC, Fowler VG Jr, Evans S, 2018. Adaptive designs for clinical trials: application to healthcare epidemiology research. Clin Infect Dis 66: 11401146.

    • Search Google Scholar
    • Export Citation
  • 42.

    Lei H, Nahum-Shani I, Lynch K, Oslin D, Murphy SA, 2012. A “SMART” design for building individualized treatment sequences. Annu Rev Clin Psychol 8: 2148 Rev.

    • Search Google Scholar
    • Export Citation
  • 43.

    Rabinovich RN et al., 2017. malERA: an updated research agenda for malaria elimination and eradication. PLoS Med 14: e1002456.

  • 44.

    Mulligan J-A, Yukich J, Hanson K, 2008. Costs and effects of the Tanzanian national voucher scheme for insecticide-treated nets. Malar J 7: 32.

  • 45.

    Stelmach R, Colaço R, Lalji S, McFarland D, Reithinger R, 2018. Cost-effectiveness of indoor residual spraying of households with insecticide for malaria prevention and control in Tanzania. Am J Trop Med Hyg 99: 627637.

    • Search Google Scholar
    • Export Citation
  • 46.

    Biswas A, Bhattacharya R, 2016. Response-adaptive designs for continuous treatment responses in phase III clinical trials: a review. Stat Methods Med Res 25: 81100 Rev.

    • Search Google Scholar
    • Export Citation
  • 47.

    Grieve AP, 2017. Response-adaptive clinical trials: case studies in the medical literature. Pharm Stat 16: 6486 Rev.

  • 48.

    Ndenga B, Githeko A, Omukunda E, Munyekenye G, Atieli H, Wamai P, Mbogo C, Minakawa N, Zhou G, Yan G, 2006. Population dynamics of malaria vectors in western Kenya highlands. J Med Entomol 43: 200206.

    • Search Google Scholar
    • Export Citation
  • 49.

    Kapesa A, Kweka EJ, Atieli H, Kamugisha E, Zhou G, Githeko AK, Yan G, 2017. Why some sites are responding better to anti-malarial interventions? A case study from western Kenya. Malar J 16: 498.

    • Search Google Scholar
    • Export Citation
  • 50.

    Machani MG, Ochomo E, Zhong D, Zhou G, Wang X, Githeko AK, Yan G, Afrane YA, 2020. Phenotypic, genotypic and biochemical changes during pyrethroid resistance selection in Anopheles gambiae mosquitoes. Sci Rep 10: 19063.

    • Search Google Scholar
    • Export Citation
  • 51.

    Eckhoff PA, 2011. A malaria transmission-directed model of mosquito life cycle and ecology. Malar J 10: 303.

  • 52.

    Eckhoff PA, 2013. Mathematical models of within-host and transmission dynamics to determine effects of malaria interventions in a variety of transmission settings. Am J Trop Med Hyg 88: 817827.

    • Search Google Scholar
    • Export Citation
  • 53.

    Eckhoff PA, 2012. Malaria parasite diversity and transmission intensity affect development of parasitological immunity in a mathematical model. Malar J 11: 419.

    • Search Google Scholar
    • Export Citation
  • 54.

    Eckhoff PA, 2012. P. falciparum infection durations and infectiousness are shaped by antigenic variation and innate and adaptive host immunity in a mathematical model. PLoS One 7: e44950.

    • Search Google Scholar
    • Export Citation
  • 55.

    Wanjala CL, Zhou G, Mbugi J, Simbauni J, Afrane YA, Ototo E, Gesuge M, Atieli H, Githeko AK, Yan G, 2015. Insecticidal decay effects of long-lasting insecticide nets and indoor residual spraying on Anopheles gambiae and Anopheles arabiensis in western Kenya. Parasit Vectors 8: 588.

    • Search Google Scholar
    • Export Citation
  • 56.

    PMI VectorLink Kenya , 2019. Annual Entomological Monitoring Report, October 2017–September 2018. Rockville, MD: The PMI VectorLink Project, Abt Associates Inc.

  • 57.

    Minta AA, Landman KZ, Mwandama DA, Shah MP, Vanden Eng JL, Sutcliffe JF, Chisaka J, Lindblade KA, Mathanga DP, Steinhardt LC, 2016. The effect of holes in long-lasting insecticidal nets on malaria in Malawi: results from a case–control study. Malar J 16: 394.

    • Search Google Scholar
    • Export Citation
  • 58.

    WHO , 2013. Recommendations for Achieving Universal Coverage with Long-Lasting Insecticidal Nets in Malaria Control. Geneva, Switzerland: World Health Organization.

  • 59.

    National Malaria Control Programme , 2018. Kenya Malaria Strategy 2019–2023. Nairobi, Kenya: Ministry of Health.

  • 60.

    Mutuku FM, Khambira M, Bisanzio D, Mungai P, Mwanzo I, Muchiri EM, King CH, Kitron U, 2013. Physical condition and maintenance of mosquito bed nets in Kwale County, coastal Kenya. Malar J 12: 46.

    • Search Google Scholar
    • Export Citation
  • 61.

    Rotondi MA, Donner A, 2012. Sample size estimation in cluster randomized trials: an evidence-based perspective. Comput Stat Data Anal 56: 11741187.

    • Search Google Scholar
    • Export Citation
  • 62.

    Tiono AB et al., 2018. Efficacy of Olyset Duo, a bednet containing pyriproxyfen and permethrin, versus a permethrin-only net against clinical malaria in an area with highly pyrethroid-resistant vectors in rural Burkina Faso: a cluster-randomised controlled trial. Lancet 392: 569580.

    • Search Google Scholar
    • Export Citation
  • 63.

    NeCamp T , Kilbourne A, Almirall D, 2017. Comparing cluster-level dynamic treatment regimens using sequential, multiple assignment, randomized trials: regression estimation and sample size considerations. Stat Methods Med Res 26: 15721589.

    • Search Google Scholar
    • Export Citation
  • 64.

    Nahum-Shani I, Qian M, Almirall D, Pelham WE, Gnagy B, Fabiano G, Waxmonsky JG, Yu J, Murphy SA, 2012. Experimental design and primary data analysis methods for comparing adaptive interventions. Psychol Methods 17: 457477.

    • Search Google Scholar
    • Export Citation
  • 65.

    Lu X, Nahum-Shani I, Kasari C, Lynch KG, Oslin DW, Pelham WE, Fabiano G, Almirall D, 2016. Comparing dynamic treatment regimes using repeated-measures outcomes: modeling considerations in SMART studies. Stat Med 35: 15951615.

    • Search Google Scholar
    • Export Citation
  • 66.

    Zhou G, Lee MC, Atieli HE, Githure JI, Githeko AK, Kazura JW, Yan G, 2020. Adaptive interventions for optimizing malaria control: an implementation study protocol for a block-cluster randomized, sequential multiple assignment trial. Trials 21: 665.

    • Search Google Scholar
    • Export Citation
  • 67.

    Minakawa N, Munga S, Atieli F, Mushinzimana E, Zhou G, Githeko AK, Yan G, 2005. Spatial distribution of anopheline larval habitats in Western Kenyan highlands: effects of land cover types and topography. Am J Trop Med Hyg 73: 157165.

    • Search Google Scholar
    • Export Citation
  • 68.

    Himeidan YE, Zhou G, Yakob L, Afrane Y, Munga S, Atieli H, El-Rayah E, Githeko AK, Yan G, 2009. Habitat stability and occurrences of malaria vector larvae in western Kenya highlands. Malar J 8: 234.

    • Search Google Scholar
    • Export Citation
  • 69.

    Kweka EJ, Zhou G, Munga S, Lee M-C, Atieli HE, Nyindo M, Githeko AK, Yan G, 2012. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes. PLoS One 7: e52084.

    • Search Google Scholar
    • Export Citation
  • 70.

    Penny MA, Maire N, Bever CA, Pemberton-Ross P, Briët OJT, Smith DL, Gething PW, Smith TA, 2016. Distribution of malaria exposure in endemic countries in Africa considering country levels of effective treatment. Malar J 14: 384.

    • Search Google Scholar
    • Export Citation
  • 71.

    Nahum-Shani I, Qian M, Almirall D, Pelham WE, Gnagy B, Fabiano GA, Waxmonsky JG, Yu J, Murphy SA, 2012. Q-learning: a data analysis method for constructing adaptive interventions. Psychol Methods 17: 478494.

    • Search Google Scholar
    • Export Citation
  • 72.

    Murphy SA, Oslin DW, Rush AJ, Zhu J, MCATS, 2007. Methodological challenges in constructing effective treatment sequences for chronic psychiatric disorders. Neuropsychopharmacology 32: 257262.

    • Search Google Scholar
    • Export Citation
  • 73.

    Bergmeir P, 2018. Enhanced Machine Learning and Data Mining Methods for Analysing Large Hybrid Electric Vehicle Fleets based on Load Spectrum Data. Wiesbaden, Germany: Springer Verlag.

  • 74.

    Liu N, Liu Y, Logan B, Xu Z, Tang J, Yang Y, 2019. Learning the dynamic treatment regimes from medical registry data through deep Q-network. Sci Rep 9: 1495.

    • Search Google Scholar
    • Export Citation
  • 75.

    White MT, Conteh L, Cibulskis R, Ghani AC, 2011. Costs and cost-effectiveness of malaria control interventions – a systematic review. Malar J 10: 337.

    • Search Google Scholar
    • Export Citation
  • 76.

    Dudley HJ, Goenka A, Orellana CJ, Martonosi SE, 2016. Multi-year optimization of malaria intervention: a mathematical model. Malar J 15: 133.

 
 
 
 

 

 
 
 

 

 

 

 

 

 

An Adaptive Intervention Trial Design for Finding the Optimal Integrated Strategies for Malaria Control and Elimination in Africa: A Model Simulation Study

View More View Less
  • 1 Program in Public Health, University of California, Irvine, California

ABSTRACT.

There are a number of available and emerging malaria intervention tools that require innovative trial designs to find the optimal combinations at given epidemiologic settings. We simulated intervention strategies based on adaptive interventions, which included long-lasting insecticidal nets (LLINs), piperonyl butoxide–treated LLINs (PBO-LLINs), indoor residual spraying (IRS), and long-lasting microbial larviciding (LLML). The aims were to determine if PBO-LLINs or LLIN+IRS combination is more effective for initial interventions than LLINs and to identify the most effective intervention. We used a clustered, randomized adaptive trial design with malaria infection prevalence (MIP) as the outcome variable. The results indicate that during the initial stage of interventions, compared with regular LLINs, PBO-LLINs (relative reduction [RR]: 29.3%) and LLIN plus IRS with alternative-insecticide (RR: 26.8%) significantly reduced MIP. In the subsequent interventions, adding alternative insecticide IRS (RR: 23.8%) or LLML (RR: 31.2%) to existing PBO-LLIN was effective in further reducing MIP. During the next stage of interventions, adding LLML on top of PBO-LLIN+IRS (with alternative insecticides) had a significant impact on MIP (RR: 39.2%). However, adding IRS (with alternative insecticides) on top of PBO-LLIN+LLML did not significantly reduce MIP (11.6%). Overall, in clusters initiated with PBO-LLIN, adding LLML would be the most effective strategy in reducing MIP; in clusters initiated with LLIN+IRS, replacing LLIN+IRS with PBO-LLIN and LLML would be the most effective in reducing MIP. This study provides a new pathway for informing the optimal integrated malaria vector interventions, and the new strategy can be tested in field trials.

    • Supplemental Materials (PDF 781 KB)

Author Notes

Address correspondence to Guofa Zhou, Program in Public Health, Room 3066, Hewitt Hall, University of California, Irvine, CA 92697. E-mail: zhoug@uci.edu

Financial support: This study was funded by the National Institutes of Health (R01 A1050243, D43 TW01505, and U19 AI129326).

Authors’ addresses: Guofa Zhou, Ming-Chieh Lee, Xiaoming Wang, Daibin Zhong, Elizabeth Hemming-Schroeder, and Guiyun Yan, Program in Public Health, University of California at Irvine, CA, E-mails: zhoug@uci.edu, mingchil@uci.edu, xiaomiw1@hs.uci.edu, dzhong@uci.edu, ehemming@uci.edu, and guiyuny@uci.edu.

Save