• 1.

    World Health Organization , 2015. Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly Epidemiol Rec 90: 3344.

    • Search Google Scholar
    • Export Citation
  • 2.

    Yager JE, Lozano Beltran DF, Torrico F, Gilman RH, Bern C, 2015. Prevalence of Chagas heart disease in a region endemic for Trypanosoma cruzi: evidence from a central Bolivian community. Glob Heart 10: 145150.

    • Search Google Scholar
    • Export Citation
  • 3.

    UNAIDS, 2019. Bolivia Datasheet. Available at: https://www.unaids.org/en/regionscountries/countries/bolivia. Accessed September 4, 2019.

  • 4.

    Bern C, 2015. Chagas’ disease. N Engl J Med 373: 456466.

  • 5.

    Rodrigues D et al., 2005. Cytokine serum levels in patients infected by human immunodeficiency virus with and without Trypanosoma cruzi coinfection. Rev Soc Bras Med Trop 38: 483487.

    • Search Google Scholar
    • Export Citation
  • 6.

    Fontes Rezende RE et al., 2006. Reactivation of Chagas’ disease in a patient with non-Hodgkin’s lymphoma: gastric, esophageal and laryngeal involvement. Trans R Soc Trop Med Hyg 100: 7478.

    • Search Google Scholar
    • Export Citation
  • 7.

    Kohl S, Pickerin LK, Frankel LS, Yaeger RG, 1982. Reactivation of Chagas’ disease during therapy of acute lymphocytic leukemia. Cancer 50: 827828.

    • Search Google Scholar
    • Export Citation
  • 8.

    Chalela CM et al., 2020. Reactivation of Chagas disease after autologous hematopoietic stem cell transplantation. Rev Soc Bras Med Trop 54: e20200143. Published 2020 Dec 21. doi: 10.1590/0037-8682-0143-2020.

    • Search Google Scholar
    • Export Citation
  • 9.

    Pinazo MJ et al., 2013. Immunosuppression and Chagas disease: a management challenge. PLoS Negl Trop Dis 7: e1965.

  • 10.

    Sartori AM et al., 2007. Manifestations of Chagas disease (American trypanosomiasis) in patients with HIV/AIDS. Ann Trop Med Parasitol 101: 3150.

    • Search Google Scholar
    • Export Citation
  • 11.

    Cordova E, Boschi A, Ambrosioni J, Cudos C, Corti M, 2008. Reactivation of Chagas disease with central nervous system involvement in HIV-infected patients in Argentina, 1992–2007. Int J Infect Dis 12: 587592.

    • Search Google Scholar
    • Export Citation
  • 12.

    de Almeida EA, Ramos Júnior AN, Correia D, Shikanai-Yasuda MA, 2011. Co-infection Trypanosoma cruzi/HIV: systematic review (1980–2010). Rev Soc Bras Med Trop 44: 762770.

    • Search Google Scholar
    • Export Citation
  • 13.

    Corti M, Yampolsky C, 2006. Prolonged survival and immune reconstitution after chagasic meningoencephalitis in a patient with acquired immunodeficiency syndrome. Rev Soc Bras Med Trop 39: 8588.

    • Search Google Scholar
    • Export Citation
  • 14.

    Rodrigues V et al., 2014. Impairment of T cell function in parasitic infections. PLoS Negl Trop Dis 8: e2567.

  • 15.

    de Freitas VL et al., 2011. Real-time PCR in HIV/Trypanosoma cruzi coinfection with and without Chagas disease reactivation: association with HIV viral load and CD4 level. PLoS Negl Trop Dis 5: e1277.

    • Search Google Scholar
    • Export Citation
  • 16.

    Sartori AM et al., 2002. Trypanosoma cruzi parasitemia in chronic Chagas disease: comparison between human immunodeficiency virus (HIV)-positive and HIV-negative patients. J Infect Dis 186: 872.

    • Search Google Scholar
    • Export Citation
  • 17.

    Encyclopaedia Britannica , 2013. Cochabamba. Available at: https://www.britannica.com/place/Cochabamba. Accessed July 21, 2019.

  • 18.

    World Health Organization , 2002. Control of Chagas Disease. WHO Technical Report Series 25.

  • 19.

    Wincker P, Britto C, Pereira JB, Cardoso MA, Oelemann W, Morel CM, 1994. Use of a simplified polymerase chain reaction procedure to detect Trypanosoma cruzi in blood samples from chronic chagasic patients in a rural endemic area. Am J Trop Med Hyg 51: 771.

    • Search Google Scholar
    • Export Citation
  • 20.

    Piron M et al., 2007. Development of a real-time PCR assay for Trypanosoma cruzi detection in blood samples. Acta Trop 103: 195200.

  • 21.

    Folstein MF, Folstein SE, McHugh PR, 1975. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12: 189198. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Diez M et al., 2007. Usefulness of PCR strategies for early diagnosis of Chagas’ disease reactivation and treatment follow-up in heart transplantation. Am J Transplant 7: 16331640.

    • Search Google Scholar
    • Export Citation
  • 23.

    Sartori AM et al., 1998. Reactivation of Chagas’ disease in a human immunodeficiency virus- infected patient leading to severe heart disease with a late positive direct microscopic examination of the blood. Am J Trop Med Hyg 59: 784786.

    • Search Google Scholar
    • Export Citation
  • 24.

    Gray EB et al., 2018. Reactivation of Chagas disease among heart transplant recipients in the United States, 2012–2016. Transpl Infect Dis 20: e12996.

    • Search Google Scholar
    • Export Citation
  • 25.

    Russomando G, de Tomassone MM, de Guillen I, Acosta N, Vera N, Almiron M, Candia N, Calcena MF, Figueredo A, 1998. Treatment of congenital Chagas’ disease diagnosed and followed up by the polymerase chain reaction. Am J Trop Med Hyg 59: 487491.

    • Search Google Scholar
    • Export Citation
  • 26.

    López-Vélez R, Norman FF, Bern C, 2020. American trypanosomiasis (Chagas disease). Ryan ET, Hill DR, Solomon T, Aronson NE, Endy TP, eds. Hunter’s Tropical Medicine and Emerging Infectious Diseases, 10th edition. New York, NY: Elsevier, 762–775.

  • 27.

    Fitzwater S et al., 2008. Polymerase chain reaction for chronic Trypanosoma cruzi infection yields higher sensitivity in blood clot than buffy coat or whole blood specimens. Am J Trop Med Hyg 79: 768770.

    • Search Google Scholar
    • Export Citation
  • 28.

    Benchetrit AG, Fernández M, Bava AJ, Corti M, Porteiro N, Martínez Peralta L, 2018. Clinical and epidemiological features of chronic Trypanosoma cruzi infection in patients with HIV/AIDS in Buenos Aires, Argentina. Int J Infect Dis 67: 118121.

    • Search Google Scholar
    • Export Citation
  • 29.

    Hernandez C, Cucunuba Z, Parra E, Toro G, Zambrano P, Ramirez JD, 2014. Chagas disease (Trypanosoma cruzi) and HIV co-infection in Colombia. Int J Infect Dis 26: 146148.

    • Search Google Scholar
    • Export Citation
 
 
 
 

 

 
 

 

 

 

 

 

 

HIV and Chagas Disease: An Evaluation of the Use of Real-Time Quantitative Polymerase Chain Reaction to Measure Levels of Trypanosoma cruzi Parasitemia in HIV Patients in Cochabamba, Bolivia

View More View Less
  • 1 Division of Infectious Diseases, University of Texas Health Science Center, McGovern School of Medicine, Houston, Texas;
  • | 2 Colectivo de Estudios Aplicados y Desarrollo Salud y Medio Ambiente, Cochabamba, Bolivia;
  • | 3 Department of Emergency Medicine, SUNY Downstate Medical Center/Kings County Hospital Medical Center, Brooklyn, New York; Biomedical Research Unit, Asociación Benéfica PRISMA, Lima, Peru;
  • | 4 Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland;
  • | 5 Department of Emergency Medicine, Louisiana State University, New Orleans, Louisiana;
  • | 6 Laboratory of Infectious Diseases, Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía Universidad Peruana Cayetano Heredia, Lima, Peru;
  • | 7 South American Program in HIV Prevention Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California;
  • | 8 Emory University School of Medicine, Atlanta, Georgia;
  • | 9 Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia;
  • | 10 University of California in San Francisco, San Francisco, California

ABSTRACT.

This cross-sectional study evaluated epidemiologic characteristics of persons living with HIV (PWH) coinfected with Trypanosoma cruzi in Cochabamba, Bolivia, and estimated T. cruzi parasitemia by real-time quantitative polymerase chain reaction (qPCR) in patients with and without evidence of reactivation by direct microscopy. Thirty-two of the 116 HIV patients evaluated had positive serology for T. cruzi indicative of chronic Chagas disease (27.6%). Sixteen of the 32 (50%) patients with positive serology were positive by quantitative polymerase chain reaction (qPCR), and four of the 32 (12.5%) were positive by direct microscopy. The median parasite load by qPCR in those with CD4+ < 200 was 168 parasites/mL (73-9951) compared with 28.5 parasites/mL (15–1,528) in those with CD4+ ≥ 200 (P = 0.89). There was a significant inverse relationship between the degree of parasitemia estimated by qPCR from blood clot and CD4+ count on the logarithmic scale (rsBC= –0.70, P = 0.007). The correlation between T. cruzi estimated by qPCR+ blood clot and HIV viral load was statistically significant with rsBC = 0.61, P = 0.047. Given the significant mortality of PWH and Chagas reactivation and that 57% of our patients with CD4+ counts < 200 cells/mm3 showed evidence of reactivation, we propose that screening for chronic Chagas disease be considered in PWH in regions endemic for Chagas disease and in the immigrant populations in nonendemic regions. Additionally, our study showed that PWH with advancing immunosuppression have higher levels of estimated parasitemia measured by qPCR and suggests a role for active surveillance for Chagas reactivation with consideration of treatment with antitrypanosomal therapy until immune reconstitution can be achieved.

    • Supplemental Materials (DOCX 13 KB)

Author Notes

Address correspondence to Melissa J. Reimer-McAtee, Division of Infectious Diseases, University of Texas Health Science Center, McGovern School of Medicine, 6410 Fannin Street, Suite 600, Houston, TX 77030. E-mail: melissa.reimer@uth.tmc.edu

Financial support: This study was supported by the T35-AI065385-05 grant through the National Institutes of Health. Funders took no part in the design or interpretation of the study. The content of this study is solely the responsibility of the authors and does not necessarily represent the views of the funding sources.

Authors’ addresses: Melissa J. Reimer-McAtee, Division of Infectious Diseases, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX, E-mail: melissa.reimer@uth.tmc.edu. Taryn Clark, SUNY Downstate Medical Center/Kings County Hospital Medical Center, Brooklyn, NY, E-mail: tarynnclark@gmail.com. Carolina Mejia, Colectivo de Estudios Aplicados y Desarrollo Salud y Medio Ambiente, Cochabamba, Bolivia, E-mail: carolinamejiav@gmail.com. Jules Terle, Louisiana State University, New Orleans, LA, E-mail: jlterle@gmail.com. Monica J. Pajuelo and Edward Valencia, Universidad Peruana Cayetano Heredia, Lima, Peru, E-mail: mjpajuelo@gmail.com. Jeanne Cabeza, University of California Los Angeles, Los Angeles, CA, E-mail: jeacabez@gmail.com. Meredith H. Lora, Emory University School of Medicine, Atlanta, GA, E-mail: meredith.lora@emory.edu. Rosario Castro, Daniel Lozano, and Faustino Torrico, Universidad Mayor de San Simón, Cochabamba, Bolivia, E-mails: rossacastrosoto@hotmail.com, danlozanob@gmail.com, and foxtorrico@yahoo.com. Caryn Bern, University of California in San Francisco, San Francisco, CA, E-mail: caryn.bern2@ucsf.edu. Robert H. Gilman, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, E-mail: gilmanbob@gmail.com.

Save