• 1.

    Crump JA, Youssef FG, Luby SP, Wasfy MO, Rangel JM, Taalat M, Oun SA, Mahoney FJ, 2003. Estimating the incidence of typhoid fever and other febrile illnesses in developing countries. Emerg Infect Dis 9: 539.

    • Search Google Scholar
    • Export Citation
  • 2.

    Crump JA, 2012. Typhoid fever and the challenge of nonmalaria febrile illness in sub-Saharan Africa. Clin Infect Dis 54: 11071109.

  • 3.

    Prasad N, Murdoch DR, Reyburn H, Crump JA, 2015. Etiology of severe febrile illness in low-and middle-income countries: a systematic review. PLoS One 10: e0127962.

    • Search Google Scholar
    • Export Citation
  • 4.

    Marchello CS, Dale AP, Pisharody S, Rubach MP, Crump JA, 2019. Prevalence of community-acquired bloodstream infections among hospitalized patients in Africa and Asia: a systematic review and meta-analysis. Antimicrob Agents Chemother 64: e01974e019.

    • Search Google Scholar
    • Export Citation
  • 5.

    Stanaway JD, Reiner RC, Blacker BF, Goldberg EM, Khalil IA, Troeger CE, Andrews JR, Bhutta ZA, Crump JA, Im J, 2019. The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis 19: 369381.

    • Search Google Scholar
    • Export Citation
  • 6.

    Stanaway JD, Parisi A, Sarkar K, Blacker BF, Reiner RC, Hay SI, Nixon MR, Dolecek C, James SL, Mokdad AH, 2019. The global burden of non-typhoidal Salmonella invasive disease: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis 19: 13121324.

    • Search Google Scholar
    • Export Citation
  • 7.

    Crump JA, 2019. Progress in typhoid fever epidemiology. Clin Infect Dis 68: S4S9.

  • 8.

    Andrews JR, Barkume C, Yu AT, Saha SK, Qamar FN, Garrett D, Luby SP, 2018. Integrating facility-based surveillance with healthcare utilization surveys to estimate enteric fever incidence: methods and challenges. J Infect Dis 218: S268S276.

    • Search Google Scholar
    • Export Citation
  • 9.

    Marks F, Von Kalckreuth V, Aaby P, Adu-Sarkodie Y, El Tayeb MA, Ali M, Aseffa A, Baker S, Biggs HM, Bjerregaard-Andersen M, 2017. Incidence of invasive Salmonella disease in sub-Saharan Africa: a multicentre population-based surveillance study. Lancet Glob Health 5: e310e323.

    • Search Google Scholar
    • Export Citation
  • 10.

    Bachou H, Tylleskär T, Kaddu-Mulindwa DH, Tumwine JK, 2006. Bacteraemia among severely malnourished children infected and uninfected with the human immunodeficiency virus-1 in Kampala, Uganda. BMC Infect Dis 6: 160.

    • Search Google Scholar
    • Export Citation
  • 11.

    Kibuuka A, Byakika-Kibwika P, Achan J, Yeka A, Nalyazi JN, Mpimbaza A, Rosenthal PJ, Kamya MR, 2015. Bacteremia among febrile Ugandan children treated with antimalarials despite a negative malaria test. Am J Trop Med Hyg 93: 276280.

    • Search Google Scholar
    • Export Citation
  • 12.

    Musiime V, Cook A, Bakeera-Kitaka S, Vhembo T, Lutakome J, Keishanyu R, Prendergast AJ, Lubwama S, Robertson V, Hughes P, 2013. Bacteremia, causative agents and antimicrobial susceptibility among HIV-1-infected children on antiretroviral therapy in Uganda and Zimbabwe. Pediatr Infect Dis J 32: 856862.

    • Search Google Scholar
    • Export Citation
  • 13.

    Lamorde M, Mpimbaza A, Walwema R, Kamya M, Kapisi J, Kajumbula H, Sserwanga A, Namuganga JF, Kusemererwa A, Tasimwa H, 2018. A cross-cutting approach to surveillance and laboratory capacity as a platform to improve health security in Uganda. Health Secur 16: S76S86.

    • Search Google Scholar
    • Export Citation
  • 14.

    Nankabirwa JI, Arinaitwe E, Rek J, Kilama M, Kizza T, Staedke SG, Rosenthal PJ, Rodriguez-Barraquer I, Briggs J, Greenhouse B, 2020. Malaria transmission, infection, and disease following sustained indoor residual spraying of insecticide in Tororo, Uganda. Am J Trop Med Hyg 103: 15251533.

    • Search Google Scholar
    • Export Citation
  • 15.

    Raouf S, Mpimbaza A, Kigozi R, Sserwanga A, Rubahika D, Katamba H, Lindsay SW, Kapella BK, Belay KA, Kamya MR, 2017. Resurgence of malaria following discontinuation of indoor residual spraying of insecticide in an area of Uganda with previously high-transmission intensity. Clin Infect Dis 65: 453460.

    • Search Google Scholar
    • Export Citation
  • 16.

    Clinical and Laboratory Standards Institute, 2020. Performance Standards for Antimicrobial Susceptibility Testing. Supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute.

  • 17.

    National Antimicrobial Resistance Monitoring System, 2019. Glossary of Terms Related to Antibiotic Resistance. Atlanta, GA:Centers for Disease Control. Available at: https://www.cdc.gov/narms/resources/glossary.html. Accessed May 12, 2021.

  • 18.

    Reddy EA, Shaw AV, Crump JA, 2010. Community-acquired bloodstream infections in Africa: a systematic review and meta-analysis. Lancet Infect Dis 10: 417432.

    • Search Google Scholar
    • Export Citation
  • 19.

    Crump JA, Morrissey AB, Nicholson WL, Massung RF, Stoddard RA, Galloway RL, Ooi EE, Maro VP, Saganda W, Kinabo GD, 2013. Etiology of severe non-malaria febrile illness in northern Tanzania: a prospective cohort study. PLoS Negl Trop Dis 7: e2324.

    • Search Google Scholar
    • Export Citation
  • 20.

    Blomberg B, Manji KP, Urassa WK, Tamim BS, Mwakagile DS, Jureen R, Msangi V, Tellevik MG, Holberg-Petersen M, Harthug S, 2007. Antimicrobial resistance predicts death in Tanzanian children with bloodstream infections: a prospective cohort study. BMC Infect Dis 7: 43.

    • Search Google Scholar
    • Export Citation
  • 21.

    Christopher A, Mshana SE, Kidenya BR, Hokororo A, Morona D, 2013. Bacteremia and resistant Gram-negative pathogens among under-fives in Tanzania. Ital J Pediatr 39: 27.

    • Search Google Scholar
    • Export Citation
  • 22.

    Dougle M, Hendriks E, Sanders E, Dorigo-Zetsma J, 1997. Laboratory investigations in the diagnosis of septicaemia and malaria. East Afr Med J 74: 353356.

    • Search Google Scholar
    • Export Citation
  • 23.

    Okwara F, Obimbo E, Wafula E, Murila F, 2004. Bacteraemia, urinary tract infection and malaria in hospitalised febrile children in Nairobi: is there an association? East Afr Med J 81: 4751.

    • Search Google Scholar
    • Export Citation
  • 24.

    Petit P, Haarlem J, Poelman M, Haverkamp M, Wamola I, 1995. Bacteraemia in patients presenting with fever. East Afr Med J 72: 116120.

  • 25.

    Walsh AL, Phiri AJ, Graham SM, Molyneux EM, Molyneux ME, 2000. Bacteremia in febrile Malawian children: clinical and microbiologic features. Pediatr Infect Dis J 19: 312318.

    • Search Google Scholar
    • Export Citation
  • 26.

    Kajumbula H, Fujita AW, Mbabazi O, Najjuka C, Izale C, Akampurira A, Aisu S, Lamorde M, Walwema R, Bahr NC, 2018. Antimicrobial drug resistance in blood culture isolates at a tertiary hospital, Uganda. Emerg Infect Dis 24: 174.

    • Search Google Scholar
    • Export Citation
  • 27.

    Ssali FN, Kamya MR, Wabwire-Mangen F, Kasasa S, Joloba M, Williams D, Mugerwa RD, Ellner JJ, Johnson JL, 1998. A prospective study of community-acquired bloodstream infections among febrile adults admitted to Mulago Hospital in Kampala, Uganda. J Acquir Immune Defic Syndr Hum Retrovirol 19: 484489.

    • Search Google Scholar
    • Export Citation
  • 28.

    Berkley JA, Lowe BS, Mwangi I, Williams T, Bauni E, Mwarumba S, Ngetsa C, Slack MP, Njenga S, Hart CA, 2005. Bacteremia among children admitted to a rural hospital in Kenya. N Engl J Med 352: 3947.

    • Search Google Scholar
    • Export Citation
  • 29.

    Nielsen MV, Sarpong N, Krumkamp R, Dekker D, Loag W, Amemasor S, Agyekum A, Marks F, Huenger F, Krefis AC, 2012. Incidence and characteristics of bacteremia among children in rural Ghana. PLoS One 7: e44063.

    • Search Google Scholar
    • Export Citation
  • 30.

    Sigaúque B, Roca A, Mandomando I, Morais L, Quintó L, Sacarlal J, Macete E, Nhamposa T, Machevo S, Aide P, 2009. Community-acquired bacteremia among children admitted to a rural hospital in Mozambique. Pediatr Infect Dis J 28: 108113.

    • Search Google Scholar
    • Export Citation
  • 31.

    Von Kalckreuth V, Konings F, Aaby P, Adu-Sarkodie Y, Ali M, Aseffa A, Baker S, Breiman RF, Bjerregaard-Andersen M, Clemens JD, 2016. The Typhoid Fever Surveillance in Africa Program (TSAP): clinical, diagnostic, and epidemiological methodologies. Clin Infect Dis 62: S9S16.

    • Search Google Scholar
    • Export Citation
  • 32.

    Crump JA, Heyderman RS, 2014. Invasive Salmonella infections in Africa. Trans R Soc Trop Med Hyg 108: 673675.

  • 33.

    Faragher E, Haan J, van Lent PL, Rockett KA, Teo Y, Richardson A, Khoka M, Molyneux M, Malange P, Bates I, 2008. Severe anemia in Malawian children. N Engl J Med 358: 2291.

    • Search Google Scholar
    • Export Citation
  • 34.

    Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA, 2012. Invasive non-typhoidal Salmonella disease: an emerging and neglected tropical disease in Africa. Lancet Glob Health 379: 24892499.

    • Search Google Scholar
    • Export Citation
  • 35.

    Feasey NA, Everett D, Faragher EB, Roca-Feltrer A, Kang’ombe A, Denis B, Kerac M, Molyneux E, Molyneux M, Jahn A, 2015. Modelling the contributions of malaria, HIV, malnutrition and rainfall to the decline in paediatric invasive non-typhoidal Salmonella disease in Malawi. PLoS Negl Trop Dis 9: e0003979.

    • Search Google Scholar
    • Export Citation
  • 36.

    MacLennan CA, Levine MM, 2013. Invasive nontyphoidal Salmonella disease in Africa: current status. Expert Rev Anti Infect Ther 11: 443446.

    • Search Google Scholar
    • Export Citation
  • 37.

    Maltha J, Guiraud I, Kaboré B, Lompo P, Ley B, Bottieau E, Van Geet C, Tinto H, Jacobs J, 2014. Frequency of severe malaria and invasive bacterial infections among children admitted to a rural hospital in Burkina Faso. PLoS One 9: e89103.

    • Search Google Scholar
    • Export Citation
  • 38.

    Morpeth SC, Ramadhani HO, Crump JA, 2009. Invasive non-Typhi Salmonella disease in Africa. Clin Infect Dis 49: 606611.

  • 39.

    Park SE, Pak GD, Aaby P, Adu-Sarkodie Y, Ali M, Aseffa A, Biggs HM, Bjerregaard-Andersen M, Breiman RF, Crump JA, 2016. The relationship between invasive nontyphoidal Salmonella disease, other bacterial bloodstream infections, and malaria in sub-Saharan Africa. Clin Infect Dis 62: S23S31.

    • Search Google Scholar
    • Export Citation
  • 40.

    Takem EN, Roca A, Cunnington A, 2014. The association between malaria and non-typhoid Salmonella bacteraemia in children in sub-Saharan Africa: a literature review. Malar J 13: 400.

    • Search Google Scholar
    • Export Citation
  • 41.

    Biggs HM, Lester R, Nadjm B, Mtove G, Todd JE, Kinabo GD, Philemon R, Amos B, Morrissey AB, Reyburn H, 2014. Invasive Salmonella infections in areas of high and low malaria transmission intensity in Tanzania. Clin Infect Dis 58: 638647.

    • Search Google Scholar
    • Export Citation
  • 42.

    Mackenzie G, Ceesay SJ, Hill PC, Walther M, Bojang KA, Satoguina J, Enwere G, d’Alessandro U, Saha D, Ikumapayi UN, 2010. A decline in the incidence of invasive non-typhoidal Salmonella infection in The Gambia temporally associated with a decline in malaria infection. PLoS One 5: e10568.

    • Search Google Scholar
    • Export Citation
  • 43.

    Mtove G, Amos B, Nadjm B, Hendriksen IC, Dondorp AM, Mwambuli A, Kim DR, Ochiai RL, Clemens JD, Von Seidlein L, 2011. Decreasing incidence of severe malaria and community-acquired bacteraemia among hospitalized children in Muheza, north-eastern Tanzania, 2006–2010. Malar J 10: 320.

    • Search Google Scholar
    • Export Citation
  • 44.

    Scott JAG, Berkley JA, Mwangi I, Ochola L, Uyoga S, Macharia A, Ndila C, Lowe BS, Mwarumba S, Bauni E, 2011. Relation between falciparum malaria and bacteraemia in Kenyan children: a population-based, case-control study and a longitudinal study. Lancet Glob Health 378: 13161323.

    • Search Google Scholar
    • Export Citation
  • 45.

    Yeka A, Gasasira A, Mpimbaza A, Achan J, Nankabirwa J, Nsobya S, Staedke SG, Donnelly MJ, Wabwire-Mangen F, Talisuna A, 2012. Malaria in Uganda: challenges to control on the long road to elimination: I. Epidemiology and current control efforts. Acta Trop 121: 184195.

    • Search Google Scholar
    • Export Citation
  • 46.

    Maziarz M, Kinyera T, Otim I, Kagwa P, Nabalende H, Legason ID, Ogwang MD, Kirimunda S, Emmanuel B, Reynolds S, 2017. Age and geographic patterns of Plasmodium falciparum malaria infection in a representative sample of children living in Burkitt lymphoma-endemic areas of northern Uganda. Malar J 16: 124.

    • Search Google Scholar
    • Export Citation
  • 47.

    Al-Emran HM, Eibach D, Krumkamp R, Ali M, Baker S, Biggs HM, Bjerregaard-Andersen M, Breiman RF, Clemens JD, Crump JA, 2016. A multicountry molecular analysis of Salmonella enterica serovar Typhi with reduced susceptibility to ciprofloxacin in sub-Saharan Africa. Clin Infect Dis 62: S42S46.

    • Search Google Scholar
    • Export Citation
  • 48.

    Lunguya O, Lejon V, Phoba M-F, Bertrand S, Vanhoof R, Verhaegen J, Smith AM, Keddy KH, Muyembe-Tamfum J-J, Jacobs J, 2012. Salmonella typhi in the Democratic Republic of the Congo: fluoroquinolone decreased susceptibility on the rise. PLoS Negl Trop Dis 6: e1921.

    • Search Google Scholar
    • Export Citation
  • 49.

    Smith A, Govender N, Keddy K, 2010. Quinolone-resistant Salmonella typhi in South Africa, 2003–2007. Epidemiol Infect 138: 8690.

  • 50.

    Mashe T, Gudza-Mugabe M, Tarupiwa A, Munemo E, Mtapuri-Zinyowera S, Smouse SL, Sooka A, Stray-Pedersen B, Smith AM, Mbanga J, 2019. Laboratory characterisation of Salmonella enterica serotype Typhi isolates from Zimbabwe, 2009–2017. BMC Infect Dis 19: 487.

    • Search Google Scholar
    • Export Citation
  • 51.

    Britto CD, Wong VK, Dougan G, Pollard A, 2018. A systematic review of antimicrobial resistance in Salmonella enterica serovar Typhi, the etiological agent of typhoid. PLoS Negl Trop Dis 12: e0006779.

    • Search Google Scholar
    • Export Citation
  • 52.

    Dyson ZA, Klemm EJ, Palmer S, Dougan G, 2019. Antibiotic resistance and typhoid. Clin Infect Dis 68: S165S170.

  • 53.

    Wong VK, Baker S, Pickard DJ, Parkhill J, Page AJ, Feasey NA, Kingsley RA, Thomson NR, Keane JA, Weill F-X, 2015. Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella typhi identifies inter- and intracontinental transmission events. Nat Genet 47: 632639.

    • Search Google Scholar
    • Export Citation
  • 54.

    Kariuki S, Revathi G, Kiiru J, Mengo DM, Mwituria J, Muyodi J, Munyalo A, Teo YY, Holt KE, Kingsley RA, 2010. Typhoid in Kenya is associated with a dominant multidrug-resistant Salmonella enterica serovar Typhi haplotype that is also widespread in Southeast Asia. J Clin Microbiol 48: 21712176.

    • Search Google Scholar
    • Export Citation
  • 55.

    Park SE, Pham DT, Boinett C, Wong VK, Pak GD, Panzner U, Espinoza LMC, von Kalckreuth V, Im J, Schütt-Gerowitt H, 2018. The phylogeography and incidence of multi-drug resistant typhoid fever in sub-Saharan Africa. Nat Commun 9: 110.

    • Search Google Scholar
    • Export Citation
  • 56.

    Kariuki S, Okoro C, Kiiru J, Njoroge S, Omuse G, Langridge G, Kingsley RA, Dougan G, Revathi G, 2015. Ceftriaxone-resistant Salmonella enterica serotype Typhimurium sequence type 313 from Kenyan patients is associated with the blaCTX-M-15 gene on a novel IncHI2 plasmid. Antimicrob Agents Chemother 59: 31333139.

    • Search Google Scholar
    • Export Citation
  • 57.

    Luvsansharav U-O, Wakhungu J, Grass J, Oneko M, Nguyen V, Bigogo G, Ogola E, Audi A, Onyango D, Hamel M, 2020. Exploration of risk factors for ceftriaxone resistance in invasive non-typhoidal Salmonella infections in western Kenya. PLoS One 15: e0229581.

    • Search Google Scholar
    • Export Citation
  • 58.

    Msefula CL, Kingsley RA, Gordon MA, Molyneux E, Molyneux ME, MacLennan CA, Dougan G, Heyderman RS, 2012. Genotypic homogeneity of multidrug resistant S. typhimurium infecting distinct adult and childhood susceptibility groups in Blantyre, Malawi. PLoS One 7: e42085.

    • Search Google Scholar
    • Export Citation
  • 59.

    Van Puyvelde S, Pickard D, Vandelannoote K, Heinz E, Barbé B, de Block T, Clare S, Coomber EL, Harcourt K, Sridhar S, 2019. An African Salmonella Typhimurium ST313 sublineage with extensive drug-resistance and signatures of host adaptation. Nat Commun 10: 112.

    • Search Google Scholar
    • Export Citation
  • 60.

    Chatham-Stephens K, Medalla F, Hughes M, Appiah GD, Aubert RD, Caidi H, Angelo KM, Walker AT, Hatley N, Masani S, 2019. Emergence of extensively drug-resistant Salmonella typhi infections among travelers to or from Pakistan—United States, 2016–2018. MMWR Morb Mortal Wkly Rep 68: 11.

    • Search Google Scholar
    • Export Citation
  • 61.

    Klemm EJ, Shakoor S, Page AJ, Qamar FN, Judge K, Saeed DK, Wong VK, Dallman TJ, Nair S, Baker S, 2018. Emergence of an extensively drug-resistant Salmonella enterica serovar Typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins. MBio 9: e00105e00118.

    • Search Google Scholar
    • Export Citation
  • 62.

    Levine MM, Simon R, 2018. The gathering storm: is untreatable typhoid fever on the way? MBio 9: e00482e18.

  • 63.

    Qamar FN, Yousafzai MT, Khalid M, Kazi AM, Lohana H, Karim S, Khan A, Hotwani A, Qureshi S, Kabir F, 2018. Outbreak investigation of ceftriaxone-resistant Salmonella enterica serotype Typhi and its risk factors among the general population in Hyderabad, Pakistan: a matched case-control study. Lancet Infect Dis 18: 13681376.

    • Search Google Scholar
    • Export Citation
  • 64.

    Andrews JR, Qamar FN, Charles RC, Ryan ET, 2018. Extensively drug-resistant typhoid: are conjugate vaccines arriving just in time? N Engl J Med 379: 14931495.

    • Search Google Scholar
    • Export Citation
  • 65.

    Andrews JR, Baker S, Marks F, Alsan M, Garrett D, Gellin BG, Saha SK, Qamar FN, Yousafzai MT, Bogoch I, 2019. Typhoid conjugate vaccines: a new tool in the fight against antimicrobial resistance. Lancet Infect Dis 19: e26e30.

    • Search Google Scholar
    • Export Citation
  • 66.

    François Watkins L et al. 2020. Update on extensively drug-resistant Salmonella serotype Typhi infections among travelers to or from Pakistan and report of ceftriaxone-resistant Salmonella serotype Typhi infections among travelers to Iraq–United States, 2018–2019. MMWR Morb Mortal Wkly Rep 69: 618622.

    • Search Google Scholar
    • Export Citation
  • 67.

    Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM, 2015. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin Microbiol Rev 28: 901937.

    • Search Google Scholar
    • Export Citation
 
 
 
 

 

 

 

 

 

 

 

 

 

Salmonella Bloodstream Infections in Hospitalized Children with Acute Febrile Illness—Uganda, 2016–2019

View More View Less
  • 1 Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia;
  • | 2 Infectious Disease Research Collaboration, Kampala, Uganda;
  • | 3 Child Health and Development Center, Makerere University, Kampala, Uganda;
  • | 4 Infectious Diseases Institute, Kampala, Uganda;
  • | 5 Department of Microbiology, Makerere University, Kampala, Uganda;
  • | 6 Division of Vector-Borne Disease, Centers for Disease Control and Prevention, Fort Collins, Colorado;
  • | 7 Division of Global Health Protection, Centers for Disease Control and Prevention, Atlanta, Georgia;
  • | 8 Division of Parasitic Disease and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia;
  • | 9 Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland

Abstract.

Invasive Salmonella infection is a common cause of acute febrile illness (AFI) among children in sub-Saharan Africa; however, diagnosing Salmonella bacteremia is challenging in settings without blood culture. The Uganda AFI surveillance system includes blood culture-based surveillance for etiologies of bloodstream infection (BSIs) in hospitalized febrile children in Uganda. We analyzed demographic, clinical, blood culture, and antimicrobial resistance data from hospitalized children at six sentinel AFI sites from July 2016 to January 2019. A total of 47,261 children were hospitalized. Median age was 2 years (interquartile range, 1–4) and 26,695 (57%) were male. Of 7,203 blood cultures, 242 (3%) yielded bacterial pathogens including Salmonella (N = 67, 28%), Staphylococcus aureus (N = 40, 17%), Escherichia spp. (N = 25, 10%), Enterococcus spp. (N = 18, 7%), and Klebsiella pneumoniae (N = 17, 7%). Children with BSIs had longer median length of hospitalization (5 days versus 4 days), and a higher case-fatality ratio (13% versus 2%) than children without BSI (all P < 0.001). Children with Salmonella BSIs did not differ significantly in length of hospitalization or mortality from children with BSI resulting from other organisms. Serotype and antimicrobial susceptibility results were available for 49 Salmonella isolates, including 35 (71%) non-typhoidal serotypes and 14 Salmonella serotype Typhi (Typhi). Among Typhi isolates, 10 (71%) were multi-drug resistant and 13 (93%) had decreased ciprofloxacin susceptibility. Salmonella strains, particularly non-typhoidal serotypes and drug-resistant Typhi, were the most common cause of BSI. These data can inform regional Salmonella surveillance in East Africa and guide empiric therapy and prevention in Uganda.

    • Supplemental Materials (PDF 114.13 KB)

Author Notes

Address correspondence to Grace D. Appiah, Division of Global Migration and Quarantine, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30329. E-mail: gappiah@cdc.gov

Financial support: The funding for this work was supported through a CDC cooperative agreement (no. 5NU2GGH001744-02-00).

Disclaimer: The opinions expressed by authors contributing to this manuscript do not necessarily reflect the opinions of the CDC or the institutions with which the authors are affiliated.

Authors’ addresses: Grace D. Appiah, Molly Freeman, Zainab Salah, Porscha Bumpus White, Susan Van Dyne, Sunkyung Kim, Ana C. Lauer, and Eric Mintz, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, E-mails: gappiah@cdc.gov, evy7@cdc.gov, pli1@cdc.gov, ofu1@cdc.gov, mdv9@cdc.gov, wox0@cdc.gov, ybp6@cdc.gov, and edm1@cdc.gov. Arthur Mpimbaza, Infectious Disease Research Collaboration, Kampala, Uganda, and Child Health and Development Center, Makerere University, Kampala, Uganda, E-mail: arthurwakg@yahoo.com. Mohammed Lamorde, Infectious Diseases Institute, Kampala, Uganda, E-mail: mlamorde@idi.co.ug. Henry Kajumbula, Department of Microbiology, Makerere University, Kampala, Uganda, E-mail: henrykajumbula427@gmail.com. Kiersten Kugeler, Jeff Borchert, and Paul Mead, Division of Vector-Borne Disease, Centers for Disease Control and Prevention, Fort Collins, CO, E-mails: bio1@cdc.gov, gqx1@cdc.gov, and pfm0@cdc.gov. Matt Mikoleit, Division of Global Health Protection, Centers for Disease Control and Prevention, Atlanta, GA, E-mail: euh1@cdc.gov. James Kapisi and Asadu Sserwanga, Infectious Disease Research Collaboration, Kampala, Uganda, E-mails: jkapisi@idrc-uganda.org and asadusserwanga@gmail.com. Alison Winstead, Division of Parasitic Disease and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, E-mail: nrc0@cdc.gov. Yukari C. Manabe and Robert J. Flick, Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, E-mails: ymanabe@jhmi.edu and rjf@jhmi.edu.

Save