• 1.

    PAHO W, 2019. Manual de Procedimientos para Vigilancia y Control de las Leishmaniasis en las Américas. Washington, DC: Panamerican Health Organization (PAHO).

  • 2.

    World Health Organization, 2015. Abordar las Enfermedades Tropicales Desatendidas con el Enfoque de los Derechos Humanos. Geneva, Switzerland: WHO.

  • 3.

    Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, Sereno D, 2016. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis 10: e0004349.

    • Search Google Scholar
    • Export Citation
  • 4.

    Alemayehu B, Alemayehu M, 2017. Leishmaniasis: a review on parasite, vector and reservoir host. Health Sci J 11. Available at: https://www.hsj.gr/medicine/leishmaniasis-a-review-on-parasite-vector-and-reservoir-host.php?aid=20131.

    • Search Google Scholar
    • Export Citation
  • 5.

    Akuffo H, Costa C, van Griensven J, Burza S, Moreno J, Herrero M, 2018. New insights into leishmaniasis in the immunosuppressed. PLoS Negl Trop Dis 12: e0006375.

    • Search Google Scholar
    • Export Citation
  • 6.

    McCall L-I, Zhang W-W, Matlashewski G, 2013. Determinants for the development of visceral leishmaniasis disease. PLoS Pathog 9: e1003053.

  • 7.

    Franssen SU 2020. Global genome diversity of the Leishmania donovani complex. eLife 9: e51243.

  • 8.

    Paranaiba LF, Pinheiro LJ, Torrecilhas AC, Macedo DH, Menezes-Neto A, Tafuri WL, Soares RP, 2017. Leishmania enriettii (Muniz & Medina, 1948): a highly diverse parasite is here to stay. PLoS Pathog 13: e1006303.

    • Search Google Scholar
    • Export Citation
  • 9.

    Rodriguez-Bonfante C, Bonfante-Garrido R, Grimaldi G, Momen H, Cupolillo E, 2003. Genotypically distinct Leishmania colombiensis isolates from Venezuela cause both cutaneous and visceral leishmaniasis in humans. Infect Genet Evol 3: 119124.

    • Search Google Scholar
    • Export Citation
  • 10.

    Aleixo JA, Nascimento ET, Monteiro GR, Fernandes MZ, Ramos AMO, Wilson ME, Pearson RD, Jeronimo SMB, 2006. Atypical American visceral leishmaniasis caused by disseminated Leishmania amazonensis infection presenting with hepatitis and adenopathy. Trans R Soc Trop Med Hyg 100: 7982.

    • Search Google Scholar
    • Export Citation
  • 11.

    Carvalho EM, Momem H, Grimaldi G, Barral-Netto M, Badaró R, Barral A, 1986. Isolation of Leishmania mexicana amazonensis from the bone marrow in a case of American visceral leishmaniasis. Am J Trop Med Hyg 35: 732734.

    • Search Google Scholar
    • Export Citation
  • 12.

    Fakhar M, Pouladfar GR, Alborzi A, Kadivar MR, Hatam GR, Motazedian MH, 2008. Isolation of Leishmania tropica from a patient with visceral leishmaniasis and disseminated cutaneous leishmaniasis, southern Iran. Am J Trop Med Hyg 79: 435437.

    • Search Google Scholar
    • Export Citation
  • 13.

    World Health Organization, 2020. Leishmaniasis: Newsroom. Geneva, Switzerland: WHO. Available at: https://www.who.int/neglected_diseases/resources/leishmaniasis/en/.

  • 14.

    Drugs for Neglected Diseases Initiative, 2020. Visceral Leishmaniasis Disease Background. Available at: https://dndi.org/diseases/visceral-leishmaniasis/.

  • 15.

    Panamerican Health Organization, 2019. Epidemiological Report of the Americas: Leishmaniases. Washington, DC: Pan American Health Organization. Available at: https://iris.paho.org/handle/10665.2/50505.

  • 16.

    Afonso MM dos S, Chaves SA de M, Magalhães M de AFM, Gracie R, Azevedo C, de Carvalho BM, Rangel EF, 2017. Ecoepidemiology of American visceral leishmaniasis in Tocantins State, Brazil: factors associated with the occurrence and spreading of the vector Lutzomyia (Lutzomyia) longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae: Phlebotominae). Claborn D, ed. The Epidemiology and Ecology of Leishmaniasis. InTech. Available at: https://www.intechopen.com/books/the-epidemiology-and-ecology-of-leishmaniasis/ecoepidemiology-of-american-visceral-leishmaniasis-in-tocantins-state-brazil-factors-associated-with.

  • 17.

    Norman FF, Comeche B, Chamorro S, López-Vélez R, 2020. Overcoming challenges in the diagnosis and treatment of parasitic infectious diseases in migrants. Expert Rev Anti Infect Ther 18: 127143.

    • Search Google Scholar
    • Export Citation
  • 18.

    Valero NNH, Uriarte M, 2020. Environmental and socioeconomic risk factors associated with visceral and cutaneous leishmaniasis: a systematic review. Parasitol Res 119: 365384.

    • Search Google Scholar
    • Export Citation
  • 19.

    Palau MT 1990. Distribution and etiology of leishmaniasis in Colombia. Am J Trop Med Hyg 42: 206214.

  • 20.

    INS, 2018. Informe de evento: Leishmaniasis 2017. Bogota, Columbia: Instituto Nacional de Salud.

  • 21.

    INS, 2017. Informe de evento: Leishmaniasis 2016. Bogota, Columbia: Instituto Nacional de Salud.

  • 22.

    Zambrano P, Ayala MS, Fuya P, Barraza O, Rodríguez Toro G, 2016. Cartagena: new urban focus of visceral leishmaniasis in Colombia. Scielo 7: 8391.

    • Search Google Scholar
    • Export Citation
  • 23.

    Ferro C, López M, Fuya P, Lugo L, Cordovez JM, González C, 2015. Spatial distribution of sand fly vectors and eco-epidemiology of cutaneous leishmaniasis transmission in Colombia. PLoS One 10: e0139391.

    • Search Google Scholar
    • Export Citation
  • 24.

    González C 2018. Diversity patterns, Leishmania DNA detection, and bloodmeal identification of Phlebotominae sand flies in villages in northern Colombia. PLoS One 13: e0190686.

    • Search Google Scholar
    • Export Citation
  • 25.

    Paternina LE, Verbel-Vergara D, Romero-Ricardo L, Pérez-Doria A, Paternina-Gómez M, Martínez L, Bejarano EE, 2016. Evidence for anthropophily in five species of phlebotomine sand flies (Diptera: Psychodidae) from northern Colombia, revealed by molecular identification of bloodmeals. Acta Trop 153: 8692.

    • Search Google Scholar
    • Export Citation
  • 26.

    Cortés LA, 2012. Foco de leishmaniasis en El Hobo, municipio de El Carmen de Bolívar, Bolívar, Colombia. Biomedica 26: 236.

  • 27.

    Paternina-Gómez M, Díaz-Olmos Y, Paternina LE, Bejarano EE, 2013. Alta prevalencia de infección por Leishmania (Kinetoplastidae: Trypanosomatidae) en caninos del norte de Colombia. Biomedica 33. Available at: https://revistabiomedica.org/index.php/biomedica/article/view/780.

    • Search Google Scholar
    • Export Citation
  • 28.

    Paternina Tuirán LE, Díaz-Olmos YA, Paternina-Gómez M, Carrillo-Bonilla LM, Vélez ID, Bejarano Martínez EE, 2015. Detección de anticuerpos anti-Leishmania (Trypanosomatidae) en poblaciones caninas del Departamento de Sucre, Colombia. Acta Biol Colomb 21. Available at: https://www.redalyc.org/articulo.oa?id=319043374018.

    • Search Google Scholar
    • Export Citation
  • 29.

    Fernández Manrique J, C T, Bello F, Escovar J, Lozano C, Ayala M, Nicholls R, Vargas J, Moncada L, A A, López M, 2002. Prevalence of canine visceral leishmaniasis in municipalities of Huila, Colombia. Rev Salud Publica (Bogota) 4: 278285. Available at: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0124-00642002000300005.

    • Search Google Scholar
    • Export Citation
  • 30.

    Romero MH, López MC, Sanchez JA, 2009. Búsqueda activa de casos de leishmaniasis visceral zoonótica en población infantil indígena y canina colombiana. Rev Salud Publica (Bogota) 11: 944951.

    • Search Google Scholar
    • Export Citation
  • 31.

    Cannova DC, Aguilar CM, Guevara H, Delgado O, Feliciangeli MD, 2017. Visceral leishmaniasis in low-income urban areas of Carabobo State, Venezuela: I. Human and canine prevalence, risk of infection. Bol Malariol Salud Ambient 57: 5868.

    • Search Google Scholar
    • Export Citation
  • 32.

    Dujardin J-C, Campino L, Cañavate C, Dedet J-P, Gradoni L, Soteriadou K, Mazeris A, Ozbel Y, Boelaert M, 2008. Spread of vector-borne diseases and neglect of leishmaniasis, Europe. Emerg Infect Dis 14: 10131018.

    • Search Google Scholar
    • Export Citation
  • 33.

    Lopes EG 2017. Serological and molecular diagnostic tests for canine visceral leishmaniasis in Brazilian endemic area: one out of five seronegative dogs are infected. Epidemiol Infect 145: 24362444.

    • Search Google Scholar
    • Export Citation
  • 34.

    Islam A, Rahman M, Islam S, Debnath P, Alam M, Hassan M, 2017. Sero-prevalence of visceral leishmaniasis (VL) among dogs in VL endemic areas of Mymensingh District, Bangladesh. J Adv Vet Anim Res 4: 241.

    • Search Google Scholar
    • Export Citation
  • 35.

    Herrera G, Teherán A, Pradilla I, Vera M, Ramírez JD, 2018. Geospatial–temporal distribution of tegumentary leishmaniasis in Colombia (2007–2016). PLoS Negl Trop Dis 12: e0006419.

    • Search Google Scholar
    • Export Citation
  • 36.

    Ovalle-Bracho C, Londoño-Barbosa D, Salgado-Almario J, González C, 2019. Evaluating the spatial distribution of Leishmania parasites in Colombia from clinical samples and human isolates (1999 to 2016). PLoS One 14: e0214124.

    • Search Google Scholar
    • Export Citation
  • 37.

    Ramírez JD, Hernández C, León CM, Ayala MS, Flórez C, González C, 2016. Taxonomy, diversity, temporal and geographical distribution of cutaneous leishmaniasis in Colombia: a retrospective study. Sci Rep 6. Available at: https://www.nature.com/articles/srep28266.

    • Search Google Scholar
    • Export Citation
  • 38.

    INS, 2018. Informe de Vigilancia Entomológica de Leishmaniasis, Colombia 2018. Bogota, Colombia: Instituto Nacional de Salud.

  • 39.

    Bejarano EE, Sierra D, Vélez ID, 2003. Novedades en la distribución geográfica del grupo verrucarum (Diptera: Psychodidae) en Colombia. Biomedica 23: 341.

    • Search Google Scholar
    • Export Citation
  • 40.

    Clayton D, Kaldor J, 1987. Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics 43: 671681.

    • Search Google Scholar
    • Export Citation
  • 41.

    Cohen BE, 2016. The role of signaling via aqueous pore formation in resistance responses to amphotericin B. Antimicrob Agents Chemother 60: 51225129.

    • Search Google Scholar
    • Export Citation
  • 42.

    Dumetz F, Cuypers B, Imamura H, Zander D, D’Haenens E, Maes I, Domagalska MA, Clos J, Dujardin J-C, De Muylder G, 2018. Molecular preadaptation to antimony resistance in Leishmania donovani on the Indian subcontinent. MSphere 3. Available at: https://pubmed.ncbi.nlm.nih.gov/29669889/.

    • Search Google Scholar
    • Export Citation
  • 43.

    Frézard F, Monte-Neto R, Reis PG, 2014. Antimony transport mechanisms in resistant Leishmania parasites. Biophys Rev 6: 119132.

  • 44.

    Alvar J, Yactayo S, Bern C, 2006. Leishmaniasis and poverty. Trends Parasitol 22: 552557.

  • 45.

    Hotez P, Ottesen E, Fenwick A, Molyneux D, 2006. The neglected tropical diseases: the ancient afflictions of stigma and poverty and the prospects for their control and elimination. Pollard AJ, Finn A, eds. Hot Topics in Infection and Immunity in Children III. Springer, 23–33. Available at: https://digitalcommons.library.tmc.edu/childrenatrisk/vol4/iss2/10/.

  • 46.

    Braz BM de A, Silva RBS, Lins SC, Silva DRX, Ramalho WM, de Melo MA, 2021. Demographic and spatial study of visceral leishmaniasis in the state of Alagoas, Brazil, during 2007–2018. Rev Soc Bras Med Trop 54: e06102020. Available at: https://www.scielo.br/scielo.php?pid=S0037-86822021000100310&script=sci_arttext.

    • Search Google Scholar
    • Export Citation
  • 47.

    Jiang D 2021. Spatiotemporal patterns and spatial risk factors for visceral leishmaniasis from 2007 to 2017 in western and central China: a modelling analysis. Sci Total Environ 764: 144275.

    • Search Google Scholar
    • Export Citation
  • 48.

    Cloots K 2020. Male predominance in reported visceral leishmaniasis cases: nature or nurture? A comparison of population-based with health facility-reported data. PLoS Negl Trop Dis 14: e0007995.

    • Search Google Scholar
    • Export Citation
  • 49.

    Jervis S 2017. Variations in visceral leishmaniasis burden, mortality and the pathway to care within Bihar, India. Parasit Vectors 10. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5719561/.

    • Search Google Scholar
    • Export Citation
  • 50.

    World Health Organization, 2020. Global Leishmaniasis Surveillance, 2017–2018, and First Report on 5 Additional Indicators. Geneva, Switzerland: WHO.

  • 51.

    Lypaczewski P, Hoshizaki J, Zhang W-W, McCall L-I, Torcivia-Rodriguez J, Simonyan V, Kaur A, Dewar K, Matlashewski G, 2018. A complete Leishmania donovani reference genome identifies novel genetic variations associated with virulence. Sci Rep 8: 16549.

    • Search Google Scholar
    • Export Citation
  • 52.

    Boité MC, Späth GF, Bussotti G, Porrozzi R, Morgado FN, Llewellyn M, Schwabl P, Cupolillo E, 2019. Trans-Atlantic spillover: deconstructing the ecological adaptation of Leishmania infantum in the Americas. Genes (Basel) 11: 4.

    • Search Google Scholar
    • Export Citation
  • 53.

    Downing T 2011. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res 21: 21432156.

    • Search Google Scholar
    • Export Citation
  • 54.

    Samaranayake N, Fernando SD, Neththikumara NF, Rodrigo C, Karunaweera ND, Dissanayake VHW, 2016. Association of HLA class I and II genes with cutaneous leishmaniasis: a case control study from Sri Lanka and a systematic review. BMC Infect Dis 16: 292.

    • Search Google Scholar
    • Export Citation
  • 55.

    Singh B, Fakiola M, Sudarshan M, Oommen J, Singh SS, Sundar S, Blackwell JM, 2019. HLA-DR class II expression on myeloid and lymphoid cells in relation to HLA-DRB1 as a genetic risk factor for visceral leishmaniasis. Immunology 156: 174186.

    • Search Google Scholar
    • Export Citation
  • 56.

    Singh T, Fakiola M, Oommen J, Singh AP, Singh AK, Smith N, Chakravarty J, Sundar S, Blackwell JM, 2018. Epitope-binding characteristics for risk versus protective DRB1 alleles for visceral leishmaniasis. J Immunol 200: 27272737.

    • Search Google Scholar
    • Export Citation
  • 57.

    de Santana Martins Rodgers M, Bavia ME, Fonseca EOL, Cova BO, Silva MMN, Carneiro DDMT, Cardim LL, Malone JB, 2019. Ecological niche models for sand fly species and predicted distribution of Lutzomyia longipalpis (Diptera: Psychodidae) and visceral leishmaniasis in Bahia State, Brazil. Environ Monit Assess 191: 331.

    • Search Google Scholar
    • Export Citation
  • 58.

    Hoyos-López R, Bolaños R, Contreras-Gutierrez M, Carrero-Sarmiento D, 2016. Phlebotomine sandflies (Diptera: Psychodidae) in a sub-Andean forest from the Norte de Santander, Colombia. J Vector Borne Dis 53: 7076.

    • Search Google Scholar
    • Export Citation
  • 59.

    Bates PA 2015. Recent advances in phlebotomine sand fly research related to leishmaniasis control. Parasit Vectors 8: 131.

  • 60.

    Oliveira-Sena IV, Werneck GL, 2019. Risk factors for in-hospital mortality from visceral leishmaniasis: a case-control study. J Infect Public Health S1876034119303181. Available at: https://pubmed.ncbi.nlm.nih.gov/31718991/.

    • Search Google Scholar
    • Export Citation
  • 61.

    Mota TF 2019. Natural infection by Leishmania infantum in the Lutzomyia longipalpis population of an endemic coastal area to visceral leishmaniasis in Brazil is not associated with bioclimatic factors. PLoS Negl Trop Dis 13: e0007626.

    • Search Google Scholar
    • Export Citation
  • 62.

    Estrada LG, Ortega E, Vivero RJ, Bejarano EE, Cadena H, 2020. Development of Lutzomyia evansi immature stages in peridomiciliary environment in a leishmaniasis urban focus in the Colombian Caribbean. Acta Trop 208: 105523.

    • Search Google Scholar
    • Export Citation
  • 63.

    Salomon OD 2020. Lutzomyia longipalpis: gone with the wind and other variables. Neotrop Entomol. Available at: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762015000700831.

    • Search Google Scholar
    • Export Citation
  • 64.

    Gómez-Bravo A, German A, Abril M, Scavuzzo M, Salomón OD, 2017. Spatial population dynamics and temporal analysis of the distribution of Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae: Phlebotominae) in the city of Clorinda, Formosa, Argentina. Parasit Vectors 10: 352.

    • Search Google Scholar
    • Export Citation
  • 65.

    Berrozpe PE, Lamattina D, Santini MS, Araujo AV, Torrusio SE, Salomón OD, 2019. Spatiotemporal dynamics of Lutzomyia longipalpis and macro‐habitat characterization using satellite images in a leishmaniasis‐endemic city in Argentina. Med Vet Entomol 33: 8998.

    • Search Google Scholar
    • Export Citation
  • 66.

    Ribeiro da Silva RC, Guimarães e Silva AS, da Silva Sousa SS, Bezerra JMT, Macário Rebêlo JM, Pinheiro VCS, 2019. Occurrence of Phlebotominae (Diptera: Psychodidae) in urban leishmaniasis transmission foci in north-eastern Brazil. J Med Entomol 56: 247253.

    • Search Google Scholar
    • Export Citation
  • 67.

    Meyer RJ, Baker J, Broad K, Czajkowski J, Orlove B, 2014. The dynamics of hurricane risk perception: real-time evidence from the 2012 Atlantic hurricane season. Bull Am Meteorol Soc 95: 13891404.

    • Search Google Scholar
    • Export Citation
  • 68.

    da Silva Neto AB, de Oliveira EF, Encina CCC, de Figueiredo HR, Paranhos Filho AC, de Oliveira AG, 2020. Effects of El Niño–Southern Oscillation on human visceral leishmaniasis in the Brazilian State of Mato Grosso do Sul. Mem Inst Oswaldo Cruz 115: e190298.

    • Search Google Scholar
    • Export Citation
  • 69.

    Carme B 2013. Climate and leishmaniasis in French Guiana. Am J Trop Med Hyg 89: 564569.

  • 70.

    Chowell G, Mizumoto K, Banda JM, Poccia S, Perrings C, 2019. Assessing the potential impact of vector-borne disease transmission following heavy rainfall events: a mathematical framework. Phil Trans R Soc Lond B Biol Sci 374: 20180272.

    • Search Google Scholar
    • Export Citation
  • 71.

    Naqvi Z, 2009. Using Remote Sensing to Assess Potential Impacts of Hurricanes on Mosquito Habitat Formation: Investigating the Mechanisms for Interrelationship between Climate and the Incidence of Vector-Borne Diseases. Available at: https://baylor-ir.tdl.org/handle/2104/5530.

  • 72.

    Watson JT, Gayer M, Connolly MA, 2007. Epidemics after natural disasters. Emerg Infect Dis 13: 15.

  • 73.

    Pérez-Flórez M, Ocampo CB, Valderrama-Ardila C, Alexander N, 2016. Spatial modeling of cutaneous leishmaniasis in the Andean region of Colombia. Mem Inst Oswaldo Cruz 111: 433442.

    • Search Google Scholar
    • Export Citation
  • 74.

    Cabaniel G, Rada L, Blanco J, Rodriguez-Morales A, Escalera Antezana JP, 2005. Impacto de los eventos de El Niño Southern Oscillation (ENSO) sobre la leishmaniosis cutánea en Sucre, Venezuela, a través del uso de información satelital, 1994–2003. Rev Peru Med Exp Salud Publica 22: 3237.

    • Search Google Scholar
    • Export Citation
  • 75.

    Alexander B, Lozano C, Barker DC, McCann SHE, Adler GH, 1998. Detection of Leishmania (Viannia) braziliensis complex in wild mammals from Colombian coffee plantations by PCR and DNA hybridization. Acta Trop 69: 4150.

    • Search Google Scholar
    • Export Citation
  • 76.

    Dantas-Torres F, Solano-Gallego L, Baneth G, Ribeiro VM, de Paiva-Cavalcanti M, Otranto D, 2012. Canine leishmaniosis in the Old and New Worlds: unveiled similarities and differences. Trends Parasitol 28: 531538.

    • Search Google Scholar
    • Export Citation
  • 77.

    Gomez SA, Chapman LAC, Dilger E, Courtenay O, Picado A, 2018. Estimating the efficacy of community-wide use of systemic insecticides in dogs to control zoonotic visceral leishmaniasis: a modelling study in a Brazilian scenario. PLoS Negl Trop Dis 12: e0006797.

    • Search Google Scholar
    • Export Citation
  • 78.

    Sevá AP, Ovallos FG, Amaku M, Carrillo E, Moreno J, Galati EAB, Lopes EG, Soares RM, Ferreira F, 2016. Canine-based strategies for prevention and control of visceral leishmaniasis in Brazil. PLoS One 11: e0160058.

    • Search Google Scholar
    • Export Citation
  • 79.

    Le Rutte EA, van Straten R, Overgaauw PAM, 2018. Awareness and control of canine leishmaniosis: a survey among Spanish and French veterinarians. Vet Parasitol 253: 8793.

    • Search Google Scholar
    • Export Citation
  • 80.

    Lopes EGP, Oviedo-Pastrana ME, Borges LFNM, Freitas ACP, Dias ES, Silva SR, Haddad JPA, França-Silva JC, Soares DFM, 2016. Transmission of visceral leishmaniasis in dogs in a risk area of the metropolitan region of Belo Horizonte, Minas Gerais, Brazil. Arq Bras Med Vet Zootec 68: 14031412.

    • Search Google Scholar
    • Export Citation
  • 81.

    Dantas-Torres F, Miró G, Bowman DD, Gradoni L, Otranto D, 2019. Culling dogs for zoonotic visceral leishmaniasis control: the wind of change. Trends Parasitol 35: 97101.

    • Search Google Scholar
    • Export Citation
  • 82.

    Dantas-Torres F 2019. Canine leishmaniasis control in the context of One Health. Emerg Infect Dis 25: 14.

  • 83.

    Vilas VJDR, Maia-Elkhoury ANS, Yadon ZE, Cosivi O, Sanchez-Vazquez MJ, 2014. Visceral leishmaniasis: a One Health approach. Vet Rec 175: 4244.

  • 84.

    Otranto D, Dantas-Torres F, 2013. The prevention of canine leishmaniasis and its impact on public health. Trends Parasitol 29: 339345.

  • 85.

    Gast A, Renginfo S, 1944. Leishmaniosis visceral: estudio epidemiológico del primer caso diagnosticado en Colombia. Anales Soc Biol 1: 512.

    • Search Google Scholar
    • Export Citation
  • 86.

    Morales A, Ferro C, Isaza de Rodríguez C, Cura E, 1987. Encuesta sobre artropodos de interés médico en La Guajira, Colombia, Suramérica. Biomedica 7: 89.

    • Search Google Scholar
    • Export Citation
  • 87.

    Sandhya R, Rakesh PS, Dev S, 2019. Emergence of visceral leishmaniasis in Kollam District, Kerala, southern India. Int J Community Med Public Health 6: 1350.

    • Search Google Scholar
    • Export Citation
  • 88.

    Couto DV, Hans Filho G, Medeiros MZ, Vicari CFS, Barbosa AB, Takita LC, 2014. American tegumentary leishmaniasis: a case of therapeutic challenge. An Bras Dermatol 89: 974976.

    • Search Google Scholar
    • Export Citation
  • 89.

    Herrera G, Hernández C, Ayala MS, Flórez C, Teherán AA, Ramírez JD, 2017. Evaluation of a multilocus sequence typing (MLST) scheme for Leishmania (Viannia) braziliensis and Leishmania (Viannia) panamensis in Colombia. Parasit Vectors 10: 236.

    • Search Google Scholar
    • Export Citation
  • 90.

    Silva SC, Guimarães LH, Silva JA, Magalhães V, Medina L, Queiroz A, Machado PRL, Schriefer A, 2018. Molecular epidemiology and in vitro evidence suggest that Leishmania braziliensis strain helps determine antimony response among American tegumentary leishmaniasis patients. Acta Trop 178: 3439.

    • Search Google Scholar
    • Export Citation
  • 91.

    Ceccato P, Ramirez B, Manyangadze T, Gwakisa P, Thomson MC, 2018. Data and tools to integrate climate and environmental information into public health. Infect Dis Poverty 7: 126.

    • Search Google Scholar
    • Export Citation
  • 92.

    Salah I, Abbasi I, Warburg A, Davidovitch N, Kotler B, 2020. Ecology of leishmaniasis in an urbanized landscape: relationship of sand fly densities, and Leishmania tropica infection rates with reservoir host colonies. Acta Trop 204: 105332.

    • Search Google Scholar
    • Export Citation
  • 93.

    Hotez PJ, 2018. The rise of leishmaniasis in the twenty-first century. Trans R Soc Trop Med Hyg 112: 421422.

  • 94.

    Purse BV, Masante D, Golding N, Pigott D, Day JC, Ibañez-Bernal S, Kolb M, Jones L, 2017. How will climate change pathways and mitigation options alter incidence of vector-borne diseases? A framework for leishmaniasis in South and Meso-America. PLoS One 12: e0183583.

    • Search Google Scholar
    • Export Citation
  • 95.

    Afrin F, Khan I, Hemeg HA, 2019. Leishmania–host interactions: an epigenetic paradigm. Front Immunol 10: 492.

  • 96.

    Berry I, Berrang-Ford L, 2016. Leishmaniasis, conflict, and political terror: a spatio-temporal analysis. Soc Sci Med 167: 140149.

  • 97.

    Murshed SM, 2002. Conflict, civil war and underdevelopment: an introduction. J Peace Res 39: 387393.

  • 98.

    Rehman K, Walochnik J, Mischlinger J, Alassil B, Allan R, Ramharter M, 2018. Leishmaniasis in northern Syria during civil war. Emerg Infect Dis 24: 19731981.

    • Search Google Scholar
    • Export Citation
  • 99.

    da Rocha ICM, dos Santos LHM, Coura-Vital W, da Cunha GMR, Magalhães F do C, da Silva TAM, Morais MHF, Oliveira E, Reis IA, Carneiro M, 2018. Effectiveness of the Brazilian Visceral Leishmaniasis Surveillance and Control Programme in reducing the prevalence and incidence of Leishmania infantum infection. Parasit Vectors 11: 586. Available at: https://pubmed.ncbi.nlm.nih.gov/30419944/.

    • Search Google Scholar
    • Export Citation
  • 100.

    Klohe K, Amuasi J, Kaducu JM, Haavardsson I, Bogatyreva E, Onarheim KH, Harrison W, Kristensen F, Prazeres da Costa C, Winkler AS, 2019. The 2017 Oslo conference report on neglected tropical diseases and emerging/re-emerging infectious diseases: focus on populations underserved. Infect Dis Poverty 8: 40.

    • Search Google Scholar
    • Export Citation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spatial and Temporal Variability of Visceral Leishmaniasis in Colombia, 2007 to 2018

View More View Less
  • 1 Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia;
  • 2 Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia;
  • 3 Grupo de Entomología, Instituto Nacional de Salud, Bogotá, Colombia

Abstract.

Visceral leishmaniasis (VL) is a neglected tropical disease associated with poverty and is endemic in 56 countries worldwide. Brazil, Venezuela, and Colombia are the most affected countries in South America. In Colombia, the National Public Health Surveillance System (SIVIGILA) consolidates epidemiological information and monitors all VL cases nationwide. However, to date, no studies have investigated the occurrence of VL in Colombia using metadata analysis. We studied the demographic data, the spatial and temporal distribution of VL cases, and the association with vector distribution of Leishmania species in Colombia from 2007 to 2018. We found 306 VL cases reported to SIVIGILA for this period, with a coverage of 25.5 cases/year, and a mortality of 2.28% (seven deaths). The highest number of confirmed cases (N = 52) occurred in 2007; the lowest (N = 9) occurred in 2012. The cases were reported mainly in children (< 7 years) affiliated with the subsidized health regimen. Regarding the geographic distribution, the cases were reported by 42 municipalities distributed in 10 departments. The occurrence of VL cases toward the northeast of Colombia, and the distribution of vectors, such as Lutzomyia longipalpis and Lu. evansi, may be changing the panorama of VL in the country. We conclude that VL, mainly in recent years, shows a temporal and spatial variability associated with the occurrence of cases in new settings. Our findings increase our understanding and knowledge of this disease, and suggest the need to monitor and prioritize areas with changes in geographic expansion to improve prevention and control actions in the country.

    • Supplementary Materials
    • Supplemental Materials (TIFF 1.41 MB)

Author Notes

Address correspondence to Juan David Ramírez, Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia. E-mail: juand.ramirez@urosario.edu.co

Funding support: The publication fee was provided by Dirección de Investigación e Innovación from Universidad del Rosario.

Authors’ addresses: Adriana Castillo-Castañeda, Giovanny Herrera, and Juan David Ramírez, Centro de Investigaciones en Microbiología y Biotecnología, UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia, E-mails: adrianac.castillo@urosario.edu.co, giovannya.herrera@urosario.edu.co, and juand.ramirez@urosario.edu.co. Martha S. Ayala, Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia, E-mail: mayalas@ins.gov.co. Patricia Fuya, Grupo de Entomología, Instituto Nacional de Salud, Bogotá, Colombia, E-mail: pfuya@ins.gov.co.

Save