• 1.

    Khoshnood S, Heidary M, Mirnejad R, Bahramian A, Sedighi M, Mirzaei H, 2017. Drug-resistant gram-negative uropathogens: a review. Biomed Pharmacother 94: 982994.

    • Search Google Scholar
    • Export Citation
  • 2.

    Iregbu K, Nwajiobi-Princewill P, 2013. Urinary tract infections in a tertiary hospital in Abuja, Nigeria. Afr J Clin Exp Microbiol 14: 169173.

    • Search Google Scholar
    • Export Citation
  • 3.

    Waller TA, Pantin SAL, Yenior AL, Pujalte GG, 2018. Urinary tract infection antibiotic resistance in the United States. Prim Care Clin Off Pract 45: 455466.

    • Search Google Scholar
    • Export Citation
  • 4.

    Oteo J, Pérez-Vázquez M, Campos J, 2010. Extended-spectrum β-lactamase producing Escherichia coli: changing epidemiology and clinical impact. Curr Opin Infect Dis 23: 320326.

    • Search Google Scholar
    • Export Citation
  • 5.

    Mazzariol A, Bazaj A, Cornaglia G, 2017. Multi-drug-resistant Gram-negative bacteria causing urinary tract infections: a review. J Chemother 29: 29.

    • Search Google Scholar
    • Export Citation
  • 6.

    Loyola S, Sanchez JF, Maguiña E, Canal E, Castillo R, Bernal M, Meza Y, Tilley DH, Oswald WE, Heitzinger K, 2020. Fecal contamination of drinking water was associated with diarrheal pathogen carriage among children younger than 5 years in three Peruvian rural communities. Am J Trop Med Hyg 102: 1279 1285.

    • Search Google Scholar
    • Export Citation
  • 7.

    Bhavnani D, Goldstick JE, Cevallos W, Trueba G, Eisenberg JN, 2014. Impact of rainfall on diarrheal disease risk associated with unimproved water and sanitation. Am J Trop Med Hyg 90: 705711.

    • Search Google Scholar
    • Export Citation
  • 8.

    Soller JA, Schoen ME, Bartrand T, Ravenscroft JE, Ashbolt NJ, 2010. Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Res 44: 46744691.

    • Search Google Scholar
    • Export Citation
  • 9.

    Kaper J, Nataro J, Mobley H, 2004. Nature reviews. Microbiology. Nat Rev Microbiol 2: 123140.

  • 10.

    Lloyd AL, Rasko DA, Mobley HL, 2007. Defining genomic islands and uropathogen-specific genes in uropathogenic Escherichia coli. J Bacteriol 189: 35323546.

    • Search Google Scholar
    • Export Citation
  • 11.

    Spurbeck RR, Dinh PC, Walk ST, Stapleton AE, Hooton TM, Nolan LK, Kim KS, Johnson JR, Mobley HL, 2012. Escherichia coli isolates that carry vat, fyuA, chuA, and yfcV efficiently colonize the urinary tract. Infect Immun 80: 41154122.

    • Search Google Scholar
    • Export Citation
  • 12.

    Chindre Y, Yellapragada L, Chinthaparthi M, 2015. Antibiotic sensitivity pattern of uropathogens: a comparative study between symptomatic and asymptomaic bacteriuria in pregnant women. Int J Curr Microbiol Appl Sci 4: 689695.

    • Search Google Scholar
    • Export Citation
  • 13.

    Paniagua-Contreras GL, Monroy-Pérez E, Rodríguez-Moctezuma JR, Domínguez-Trejo P, Vaca-Paniagua F, Vaca S, 2017. Virulence factors, antibiotic resistance phenotypes and O-serogroups of Escherichia coli strains isolated from community-acquired urinary tract infection patients in Mexico. J Microbiol Immunol Infect 50: 478485.

    • Search Google Scholar
    • Export Citation
  • 14.

    Johnson JR, Russo TA, 2002. Extraintestinal pathogenic Escherichia coli: “the other bad E. coli”. J Lab Clin Med 139: 155162.

  • 15.

    Johnson JR, Johnston BD, Porter S, Thuras P, Aziz M, Price LB, 2019. Accessory traits and phylogenetic background predict Escherichia coli extraintestinal virulence better than does ecological source. J Infect Dis 219: 121132.

    • Search Google Scholar
    • Export Citation
  • 16.

    Köhler C-D, Dobrindt U, 2011. What defines extraintestinal pathogenic Escherichia coli? Int J Med Microbiol 301: 642647.

  • 17.

    Sarowska J, Futoma-Koloch B, Jama-Kmiecik A, Frej-Madrzak M, Ksiazczyk M, Bugla-Ploskonska G, Choroszy-Krol I, 2019. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut Pathogens 11: 10.

    • Search Google Scholar
    • Export Citation
  • 18.

    Johnson JR, Johnston BD, Delavari P, Thuras P, Clabots C, Sadowsky MJ, 2017. Phylogenetic backgrounds and virulence-associated traits of Escherichia coli isolates from surface waters and diverse animals in Minnesota and Wisconsin. Appl Environ Microbiol 83: e01329-17.

    • Search Google Scholar
    • Export Citation
  • 19.

    Sen K, Shepherd V, Berglund T, Quintana A, Puim S, Tadmori R, Turner RJ, Khalil L, Soares MA, 2020. American crows as carriers of extra intestinal pathogenic E. coli and avian pathogenic-like E. coli and their potential impact on a constructed wetland. Microorganisms 8: 1595.

    • Search Google Scholar
    • Export Citation
  • 20.

    Rayasam SD, Ray I, Smith KR, Riley LW, 2019. Extraintestinal pathogenic Escherichia coli and antimicrobial drug resistance in a maharashtrian drinking water system. Am J Trop Med Hyg 100: 11011104.

    • Search Google Scholar
    • Export Citation
  • 21.

    Hamelin K, Bruant G, El-Shaarawi A, Hill S, Edge TA, Fairbrother J, Harel J, Maynard C, Masson L, Brousseau R, 2007. Occurrence of virulence and antimicrobial resistance genes in Escherichia coli isolates from different aquatic ecosystems within the St. Clair River and Detroit River areas. Appl Environ Microbiol 73: 477484.

    • Search Google Scholar
    • Export Citation
  • 22.

    Cho S, Nguyen HAT, McDonald JM, Woodley TA, Hiott LM, Barrett JB, Jackson CR, Frye JG., 2019. Genetic characterization of antimicrobial-resistant Escherichia coli isolated from a mixed-use watershed in northeast Georgia, USA. Int J Environ Res Public Health 16: 3761.

    • Search Google Scholar
    • Export Citation
  • 23.

    Liu CM, Stegger M, Aziz M, Johnson TJ, Waits K, Nordstrom L, Gauld L, Weaver B, Rolland D, Statham S, 2018. Escherichia coli ST131-H22 as a foodborne uropathogen. MBio 9: e00470-18.

    • Search Google Scholar
    • Export Citation
  • 24.

    Maluta RP, Logue CM, Casas MRT, Meng T, Guastalli EAL, Rojas TCG, Montelli AC, Sadatsune T, de Carvalho Ramos M, Nolan LK, 2014. Overlapped sequence types (STs) and serogroups of avian pathogenic (APEC) and human extra-intestinal pathogenic (ExPEC) Escherichia coli isolated in Brazil. PloS One 9: e105016.

    • Search Google Scholar
    • Export Citation
  • 25.

    Manges AR, Smith SP, Lau BJ, Nuval CJ, Eisenberg JN, Dietrich PS, Riley LW, 2007. Retail meat consumption and the acquisition of antimicrobial resistant Escherichia coli causing urinary tract infections: a case–control study. Foodborne Pathog Dis 4: 419431.

    • Search Google Scholar
    • Export Citation
  • 26.

    Mora A, Viso S, López C, Alonso MP, García-Garrote F, Dabhi G, Mamani R, Herrera A, Marzoa J, Blanco M, 2013. Poultry as reservoir for extraintestinal pathogenic Escherichia coli O45: K1: H7-B2-ST95 in humans. Vet Microbiol 167: 506512.

    • Search Google Scholar
    • Export Citation
  • 27.

    Nordstrom L, Liu CM, Price LB, 2013. Foodborne urinary tract infections: a new paradigm for antimicrobial-resistant foodborne illness. Front Microbiol 4: 29.

    • Search Google Scholar
    • Export Citation
  • 28.

    Yamaji R, Friedman CR, Rubin J, Suh J, Thys E, McDermott P, Hung-Fan M, Riley LW, 2018. A population-based surveillance study of shared genotypes of Escherichia coli isolates from retail meat and suspected cases of urinary tract infections. mSphere 3: e00179-18.

    • Search Google Scholar
    • Export Citation
  • 29.

    Zhang H, Zhou Y, Guo S, Chang W, 2015. Prevalence and characteristics of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae isolated from rural well water in Taian, China, 2014. Environ Sci Pollut Res 22: 1148811492.

    • Search Google Scholar
    • Export Citation
  • 30.

    De Boeck H, Miwanda B, Lunguya-Metila O, Muyembe-Tamfum JJ, Stobberingh E, Glupczynski Y, Jacobs J, 2012. ESBL-positive enterobacteria isolates in drinking water. Emerg Infect Dis 18: 1019.

    • Search Google Scholar
    • Export Citation
  • 31.

    Madec JY, Haenni M, Ponsin C, Kieffer N, Rion E, Gassilloud B, 2016. Sequence type 48 Escherichia coli carrying the blaCTX-M-1 IncI1/ST3 plasmid in drinking water in France. Antimicrob Agents Chemoth 60: 64306432.

    • Search Google Scholar
    • Export Citation
  • 32.

    Tanner WD, VanDerslice JA, Goel RK, Leecaster MK, Fisher MA, Olstadt J, Gurley CM, Morris AG, Seely KA, Chapman L, 2019. Multi-state study of Enterobacteriaceae harboring extended-spectrum beta-lactamase and carbapenemase genes in US drinking water. Sci Rep 9: 18.

    • Search Google Scholar
    • Export Citation
  • 33.

    Walsh TR, Weeks J, Livermore DM, Toleman MA, 2011. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 11: 355362.

    • Search Google Scholar
    • Export Citation
  • 34.

    Coleman B, Salvadori M, McGeer A, Sibley K, Neumann N, Bondy S, Gutmanis I, McEwen S, Lavoie M, Strong D, 2012. The role of drinking water in the transmission of antimicrobial-resistant E. coli. Epidemiol Infect 140: 633642.

    • Search Google Scholar
    • Export Citation
  • 35.

    Amato HK, Wong NM, Pelc C, Taylor K, Price LB, Altabet M, Jordan TE, Graham JP, 2020. Effects of concentrated poultry operations and cropland manure application on antibiotic resistant Escherichia coli and nutrient pollution in Chesapeake Bay watersheds. Sci Total Environ 735: 139401.

    • Search Google Scholar
    • Export Citation
  • 36.

    Anastasi EM, Matthews B, Stratton HM, Katouli M, 2012. Pathogenic Escherichia coli found in sewage treatment plants and environmental waters. Appl Environ Microbiol 78: 55365541.

    • Search Google Scholar
    • Export Citation
  • 37.

    Müller A, Stephan R, Nüesch-Inderbinen M, 2016. Distribution of virulence factors in ESBL-producing Escherichia coli isolated from the environment, livestock, food and humans. Sci Total Environ 541: 667672.

    • Search Google Scholar
    • Export Citation
  • 38.

    Zhi S, Stothard P, Banting G, Scott C, Huntley K, Ryu K, Otto S, Ashbolt N, Checkley S, Dong T, 2020. Characterization of water treatment-resistant and multidrug-resistant urinary pathogenic Escherichia coli in treated wastewater. Water Res 182: 115827.

    • Search Google Scholar
    • Export Citation
  • 39.

    Zhi S, Banting G, Stothard P, Ashbolt NJ, Checkley S, Meyer K, Otto S, Neumann NF, 2019. Evidence for the evolution, clonal expansion and global dissemination of water treatment-resistant naturalized strains of Escherichia coli in wastewater. Water Res 156: 208222.

    • Search Google Scholar
    • Export Citation
  • 40.

    Gomi R, Matsuda T, Matsumura Y, Yamamoto M, Tanaka M, Ichiyama S, Yoneda M, 2017. Whole-genome analysis of antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in river water. Appl Environ Microbiol 83: 115827.

    • Search Google Scholar
    • Export Citation
  • 41.

    Gomi R, Matsuda T, Fujimori Y, Harada H, Matsui Y, Yoneda M, 2015. Characterization of pathogenic Escherichia coli in river water by simultaneous detection and sequencing of 14 virulence genes. Environ Sci Technol 49: 68006807.

    • Search Google Scholar
    • Export Citation
  • 42.

    Ahmed W, Hodgers L, Masters N, Sidhu J, Katouli M, Toze S, 2011. Occurrence of intestinal and extraintestinal virulence genes in Escherichia coli isolates from rainwater tanks in Southeast Queensland, Australia. Appl Environ Microbiol 77: 73947400.

    • Search Google Scholar
    • Export Citation
  • 43.

    Divya SP, Hatha AAM, 2019. Screening of tropical estuarine water in south-west coast of India reveals emergence of ARGs-harboring hypervirulent Escherichia coli of global significance. Int J Hyg Environ Health 222: 235248.

    • Search Google Scholar
    • Export Citation
  • 44.

    Sukumaran D, Mohamed Hatha AA, 2015. Antibiotic resistance and virulence genes of extraintestinal pathogenic Escherichia coli from tropical estuary, South India. J Infect Dev Ctries 9: 496504.

    • Search Google Scholar
    • Export Citation
  • 45.

    Diallo AA, Brugère H, Kérourédan M, Dupouy V, Toutain PL, Bousquet-Mélou A, Oswald E, Bibbal D, 2013. Persistence and prevalence of pathogenic and extended-spectrum beta-lactamase-producing Escherichia coli in municipal wastewater treatment plant receiving slaughterhouse wastewater. Water Res 47: 47194729.

    • Search Google Scholar
    • Export Citation
  • 46.

    Chandran A, Hatha AAM, Varghese S, Sheeja KM, 2008. Prevalence of multiple drug resistant Escherichia coli serotypes in a tropical estuary, India. Microbes Environ 23: 153158.

    • Search Google Scholar
    • Export Citation
  • 47.

    Ramteke PW, Tewari S, 2007. Serogroups of Escherichia coli from drinking water. Environ Monit Assess 130: 215220.

  • 48.

    Verma T, Ramteke PW, Garg SK, 2008. Quality assessment of treated tannery wastewater with special emphasis on pathogenic E. coli detection through serotyping. Environ Monit Assess 145: 243249.

    • Search Google Scholar
    • Export Citation
  • 49.

    Mattioli MCM, Davis J, Boehm AB, 2015. Hand-to-mouth contacts result in greater ingestion of feces than dietary water consumption in Tanzania: a quantitative fecal exposure assessment model. Environ Science Technol 49: 19121920.

    • Search Google Scholar
    • Export Citation
  • 50.

    Das P, Baker KK, Dutta A, Swain T, Sahoo S, Das BS, Panda B, Nayak A, Bara M, Bilung B, 2015. Menstrual hygiene practices, WASH access and the risk of urogenital infection in women from Odisha, India. PLoS One 10: e0130777.

    • Search Google Scholar
    • Export Citation
  • 51.

    Janoowalla H, Keppler H, Asanti D, Xie X, Negassa A, Benfield N, Rulisa S, Nathan LM., 2020. The impact of menstrual hygiene management on adolescent health: the effect of Go! pads on rate of urinary tract infection in adolescent females in Kibogora, Rwanda. Int J Gynecol Obstet 148: 8795.

    • Search Google Scholar
    • Export Citation
  • 52.

    McKeon DM, Calabrese JP, Bissonnette GK, 1995. Antibiotic resistant gram-negative bacteria in rural groundwater supplies. Water Res 29: 19021908.

    • Search Google Scholar
    • Export Citation
  • 53.

    Franz E, Veenman C, van Hoek AHAM, de Roda Husman A, Blaak H, 2015. Pathogenic Escherichia coli producing extended-spectrum β-Lactamases isolated from surface water and wastewater. Sci Rep 5: 14372.

    • Search Google Scholar
    • Export Citation
  • 54.

    Hong H, Chun J, Lee Y, 2004. Detection of extended-spectrum beta-lactamase-producing, multidrug-resistant environmental isolates of Escherichia coli that bind to human bladder cells. Microb Drug Resist 10: 184189.

    • Search Google Scholar
    • Export Citation
  • 55.

    World Health Organization, 2017. Antimicrobial Resistance: Global Report on Surveillance. Geneva, Switzerland: WHO.

  • 56.

    Manges AR, Johnson JR, Foxman B, O’Bryan TT, Fullerton KE, Riley LW, 2001. Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. New Engl J Med 345: 10071013.

    • Search Google Scholar
    • Export Citation
  • 57.

    Manges A, 2016. Escherichia coli and urinary tract infections: the role of poultry-meat. Clin Microbiol Infect 22: 122129.

  • 58.

    Conan A, O’Reilly CE, Ogola E, Ochieng JB, Blackstock AJ, Omore R, Ochieng L, Moke F, Parsons MB, Xiao L, 2017. Animal-related factors associated with moderate-to-severe diarrhea in children younger than five years in western Kenya: a matched case-control study. PLoS Negl Trop Dis 11: e0005795.

    • Search Google Scholar
    • Export Citation
  • 59.

    Pickering AJ, Crider Y, Sultana S, Swarthout J, Goddard FG, Islam SA, Sen S, Ayyagari R, Luby SP, 2019. Effect of in-line drinking water chlorination at the point of collection on child diarrhoea in urban Bangladesh: a double-blind, cluster-randomised controlled trial. Lancet Glob Health 7: e1247e1256.

    • Search Google Scholar
    • Export Citation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Waterborne Urinary Tract Infections: Have We Overlooked an Important Source of Exposure?

View More View Less
  • 1 Berkeley School of Public Health, University of California Berkeley, Berkeley, California;
  • 2 Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala;
  • 3 Paul G. Allen School for Global Animal Health, Washington State University Pullman, Guatemala City, Guatemala

Abstract.

The presence of intestinal pathogenic Escherichia coli in drinking water is well recognized as a risk for diarrhea. The role of drinking water in extraintestinal infections caused by E. coli—such as urinary tract infections (UTIs)—remains poorly understood. Urinary tract infections are a leading cause of outpatient infections globally, with a lifetime incidence of 50–60% in adult women. We reviewed the scientific literature on the occurrence of uropathogenic E. coli (UPEC) in water supplies to determine whether the waterborne route may be an important, overlooked, source of UPEC. A limited number of studies have assessed whether UPEC isolates are present in drinking water supplies, but no studies have measured whether their presence in water may increase UPEC colonization or the risk of UTIs in humans. Given the prevalence of drinking water supplies contaminated with E. coli across the globe, efforts should be made to characterize UTI-related risks associated with drinking water, as well as other pathways of exposure.

Author Notes

Address correspondence to Jay P. Graham, Division of Environmental Health Sciences, University of California, Berkeley School of Public Health, 2121 Berkeley Way West, Rm. 5302, Berkeley, CA 94720. E-mail: jay.graham@berkeley.edu

Disclaimer: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Disclosure: The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Financial support: Research reported in this publication was supported in part (for J. P. G. and H. A.) by the National Institutes of Health under award number R01AI135118.

Authors’ addresses: Jay P. Graham and Heather K. Amato, Division of Environmental Health Sciences, UC Berkeley School of Public Health, Berkeley, CA, E-mails: jay.graham@berkeley.edu and heather_amato@berkeley.edu. Renata Mendizabal-Cabrera, Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala, E-mail: rmendizabal@ces.uvg.edu.gt. Danilo Alvarez, Centro de Estudios en Salud, Instituto de Investigaciones, Universidad del Valle de Guatemala, Guatemala City, Guatemala, E-mail: dalvarez@ces.uvg.edu.gt. Brooke M. Ramay, Instituto de Investigaciones Ciudad de Guatemala, Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala, and The Paul G. Allen School for Global Animal Health, Washington State University Pullman, Center for Health Studies, Guatemala City, Guatemala, E-mail: bramay@uvg.edu.gt.

Save