• 1.

    World Bank, 2018. Urban Population. Available at: https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS.

  • 2.

    Broussard JL, Devkota S, 2016. The changing microbial landscape of western society: diet, dwellings and discordance. Mol Metab 5: 737742.

  • 3.

    Guerrant RL, DeBoer MD, Moore SR, Scharf RJ, Lima AAM, 2013. The impoverished gut: a triple burden of diarrhoea, stunting and chronic disease. Nat Rev Gastroenterol Hepatol 10: 220229.

    • Search Google Scholar
    • Export Citation
  • 4.

    Smits SA 2017. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357: 802806.

  • 5.

    Yatsunenko T 2012. Human gut microbiome viewed across age and geography. Nature 486: 222227.

  • 6.

    Obregon-Tito AJ 2015. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat Commun 6: 6.

  • 7.

    Clemente JC 2015. The microbiome of uncontacted Amerindians. Sci Adv 1: 112.

  • 8.

    Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R, 2012. Diversity, stability and resilience of the human gut microbiota. Nature 489: 220230.

    • Search Google Scholar
    • Export Citation
  • 9.

    Tyakht AV 2013. Human gut microbiota community structures in urban and rural populations in Russia. Nat Commun 4: 2469.

  • 10.

    Schnorr SL 2014. Gut microbiome of the Hadza hunter-gatherers. Nat Commun 5: 3654.

  • 11.

    Martínez I, Stegen JC, Maldonado-Gómez MX, Eren AM, Siba PM, Greenhill AR, Walter J, 2015. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell Rep 11: 527538.

    • Search Google Scholar
    • Export Citation
  • 12.

    De Filippo C, Di Paola M, Ramazzotti M, Albanese D, Pieraccini G, Banci E, Miglietta F, Cavalieri D, Lionetti P, 2017. Diet, environments, and gut microbiota: a preliminary investigation in children living in rural and urban Burkina Faso and Italy. Front Microbiol 8: 8.

    • Search Google Scholar
    • Export Citation
  • 13.

    Mancabelli L, Milani C, Lugli GA, Turroni F, Ferrario C, van Sinderen D, Ventura M, 2017. Meta-analysis of the human gut microbiome from urbanized and pre-agricultural populations. Environ Microbiol 19: 13791390.

    • Search Google Scholar
    • Export Citation
  • 14.

    Fragiadakis GK 2018. Links between environment, diet, and the hunter-gatherer microbiome. Gut Microbes 10: 112.

  • 15.

    Ruggles KV, Wang J, Volkova A, Contreras M, Noya-Alarcon O, Lander O, Caballero H, Dominguez-Bello MG, 2018. Changes in the gut microbiota of urban subjects during an immersion in the traditional diet and lifestyle of a rainforest village. MSphere 3: 3.

    • Search Google Scholar
    • Export Citation
  • 16.

    Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL, 2016. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529: 212.

    • Search Google Scholar
    • Export Citation
  • 17.

    Winglee K, Howard AG, Sha W, Gharaibeh RZ, Liu J, Jin D, Fodor AA, Gordon-Larsen P, 2017. Recent urbanization in China is correlated with a westernized microbiome encoding increased virulence and antibiotic resistance genes. Microbiome 5: 5.

    • Search Google Scholar
    • Export Citation
  • 18.

    Blaser MJ, Falkow S, 2009. What are the consequences of the disappearing human microbiota? Nat Rev Microbiol 7: 887894.

  • 19.

    Stagaman K 2018. Market integration predicts human gut microbiome attributes across a gradient of economic development. mSystems 3: e00122e17.

    • Search Google Scholar
    • Export Citation
  • 20.

    Kamada N, Chen GY, Inohara N, Núñez G, 2013. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14: 685690.

  • 21.

    Blumstein DT, Levy K, Mayer E, Harte J, 2014. Gastrointestinal dysbiosis. Evol Med Public Health 2014: 163.

  • 22.

    McGrady-Steed J, Harris PM, Morin PJ, 1997. Biodiversity regulates ecosystem predictability. Nature 390: 162165.

  • 23.

    Kennedy TA, Naeem S, Howe KM, Knops JMH, Tilman D, Reich P, 2002. Biodiversity as a barrier to ecological invasion. Nature 417: 636638.

  • 24.

    Smith S 2019. Locals get travelers’ diarrhea too: risk factors for diarrheal illness and pathogenic E. coli infection across an urban–rural gradient in Ecuador. Trop Med Int Health 24: 205219.

    • Search Google Scholar
    • Export Citation
  • 25.

    Rival L, 2003. The meanings of forest governance in Esmeraldas, Ecuador. Oxf Dev Stud 31: 479501.

  • 26.

    Eisenberg JNS 2006. Environmental change and infectious disease: how new roads affect the transmission of diarrheal pathogens in rural Ecuador. Proc Natl Acad Sci USA 103: 1946019465.

    • Search Google Scholar
    • Export Citation
  • 27.

    Toma C, Lu Y, Higa N, Nakasone N, Chinen I, Baschkier A, Rivas M, Iwanaga M, 2003. Multiplex PCR assay for identification of human diarrheagenic Escherichia coli. J Clin Microbiol 41: 26692671.

    • Search Google Scholar
    • Export Citation
  • 28.

    Paton AW, Paton JC, 1998. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. J Clin Microbiol 36: 598602.

    • Search Google Scholar
    • Export Citation
  • 29.

    Tornieporth NG, John J, Salgado K, de Jesus P, Latham E, Melo MC, Gunzburg ST, Riley LW, 1995. Differentiation of pathogenic Escherichia coli strains in Brazilian children by PCR. J Clin Microbiol 33: 13711374.

    • Search Google Scholar
    • Export Citation
  • 30.

    Le Bouguenec C, Archambaud M, Labigne A, 1992. Rapid and specific detection of the pap, afa, and sfa adhesin-encoding operons in uropathogenic Escherichia coli strains by polymerase chain reaction. J Clin Microbiol 30: 11891193.

    • Search Google Scholar
    • Export Citation
  • 31.

    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD, 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina Sequencing Platform. Appl Environ Microbiol 79: 51125120.

    • Search Google Scholar
    • Export Citation
  • 32.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP, 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13: 581583.

    • Search Google Scholar
    • Export Citation
  • 33.

    Caporaso JG 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335336.

  • 34.

    McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P, 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6: 610618.

    • Search Google Scholar
    • Export Citation
  • 35.

    Chao A, Shen T-J, 2003. Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environ Ecol Stat 10: 429443.

    • Search Google Scholar
    • Export Citation
  • 36.

    Hausser J, Strimmer K, 2009. Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks. J Mach Learn Res 10: 14691484.

    • Search Google Scholar
    • Export Citation
  • 37.

    Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R, 2013. EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience 2: 16.

    • Search Google Scholar
    • Export Citation
  • 38.

    Oksanen J 2018. vegan: community ecology package. R package version 2.

  • 39.

    Morgan XC 2012. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13: R79.

  • 40.

    Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA, 2015. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol 11: e1004226.

    • Search Google Scholar
    • Export Citation
  • 41.

    Doncheva NT, Assenov Y, Domingues FS, Albrecht M, 2012. Topological analysis and interactive visualization of biological networks and protein structures. Nat Protoc 7: 670685.

    • Search Google Scholar
    • Export Citation
  • 42.

    Csardi C, Nepusz T, 2006. The igraph software package for complex network research. InterJournal Complex Systems: 16951704.

  • 43.

    Rodriguez-R LM, Gunturu S, Harvey W, Rosselló-Mora R, Tiedje JM, Cole JR, Konstantinidis KT, 2018. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucl Acids Res 46: W282W288.

    • Search Google Scholar
    • Export Citation
  • 44.

    Rodriguez-R LM, Gunturu S, Tiedje JM, Cole JR, Konstantinidis KT, 2018. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. mSystems 3: e00039-18.

    • Search Google Scholar
    • Export Citation
  • 45.

    Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM, 2016. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17: 132.

    • Search Google Scholar
    • Export Citation
  • 46.

    Goslee S, Urban D, 2007. The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22: 119.

  • 47.

    Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N, 2015. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12: 902903.

    • Search Google Scholar
    • Export Citation
  • 48.

    Abubucker S 2012. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8: e1002358.

  • 49.

    Parks DH, Tyson GW, Hugenholtz P, Beiko RG, 2014. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30: 31233124.

    • Search Google Scholar
    • Export Citation
  • 50.

    Wu Y-W, Simmons BA, Singer SW, 2016. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32: 605607.

    • Search Google Scholar
    • Export Citation
  • 51.

    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW, 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25: 10431055.

    • Search Google Scholar
    • Export Citation
  • 52.

    Seemann T, 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 20682069.

  • 53.

    Wu CH 2006. The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucl Acids Res 34: D187D191.

  • 54.

    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ, 1990. Basic local alignment search tool. J Mol Biol 215: 403410.

  • 55.

    Ashburner M 2000. Gene ontology: tool for the unification of biology. Nat Genet 25: 2529.

  • 56.

    The Gene Ontology Consortium, 2017. Expansion of the gene ontology knowledgebase and resources. Nucl Acids Res 45: D331D338.

  • 57.

    McDonald D 2018. American gut: an open platform for citizen science microbiome research. mSystems 3: e00031e18.

  • 58.

    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C, 2011. Metagenomic biomarker discovery and explanation. Genome Biol 12: R60.

    • Search Google Scholar
    • Export Citation
  • 59.

    Gophna U, Konikoff T, Nielsen HB, 2016. Oscillospira and related bacteria: from metagenomic species to metabolic features. Environ Microbiol 19: 835841.

    • Search Google Scholar
    • Export Citation
  • 60.

    Konstantinidis KT, Tiedje JM, 2005. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 102: 25672572.

    • Search Google Scholar
    • Export Citation
  • 61.

    De Santis S, Cavalcanti E, Mastronardi M, Jirillo E, Chieppa M, 2015. Nutritional keys for intestinal barrier modulation. Front Immunol 6: 612.

  • 62.

    Lin R, Liu W, Piao M, Zhu H, 2017. A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids 49: 20832090.

  • 63.

    Kibe R 2014. Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice. Sci Rep 4: 4548.

  • 64.

    Gulati K, Anand R, Ray A, 2016. Nutraceuticals as adaptogens: their role in health and disease. Gupta RC, ed. Nutraceuticals. Boston, MA: Academic Press, 193–205.

  • 65.

    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P, 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107: 1469114696.

    • Search Google Scholar
    • Export Citation
  • 66.

    Wu GD 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334: 105108.

  • 67.

    Lim MY, Rho M, Song Y-M, Lee K, Sung J, Ko G, 2014. Stability of gut enterotypes in Korean monozygotic twins and their association with biomarkers and diet. Sci Rep 4: 7348.

    • Search Google Scholar
    • Export Citation
  • 68.

    David LA 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505: 559563.

  • 69.

    LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M, 2013. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24: 160168.

    • Search Google Scholar
    • Export Citation
  • 70.

    Schiller LR, 1999. Secretory diarrhea. Curr Gastroenterol Rep 1: 389397.

  • 71.

    Hammer HF, Hammer J, 2012. Diarrhea caused by carbohydrate malabsorption. Gastroenterol Clin 41: 611627.

  • 72.

    Peña-Gonzalez A 2019. Metagenomic signatures of gut infections caused by different Escherichia coli pathotypes. Appl Environ Microbiol 85: e01820-19.

    • Search Google Scholar
    • Export Citation
  • 73.

    Antharam VC, Li EC, Ishmael A, Sharma A, Mai V, Rand KH, Wang GP, 2013. Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J Clin Microbiol 51: 28842892.

    • Search Google Scholar
    • Export Citation
  • 74.

    Chen S-Y, Tsai C-N, Lee Y-S, Lin C-Y, Huang K-Y, Chao H-C, Lai M-W, Chiu C-H, 2017. Intestinal microbiome in children with severe and complicated acute viral gastroenteritis. Sci Rep 7: 46130.

    • Search Google Scholar
    • Export Citation
  • 75.

    Pérez-Cobas AE, Artacho A, Ott SJ, Moya A, Gosalbes MJ, Latorre A, 2014. Structural and functional changes in the gut microbiota associated to Clostridium difficile infection. Front Microbiol 5: 335.

    • Search Google Scholar
    • Export Citation
  • 76.

    The HC et al, 2018. Assessing gut microbiota perturbations during the early phase of infectious diarrhea in Vietnamese children. Gut Microbes 9: 3854.

    • Search Google Scholar
    • Export Citation
  • 77.

    Seekatz AM, Aas J, Gessert CE, Rubin TA, Saman DM, Bakken JS, Young VB, 2014. Recovery of the gut microbiome following fecal microbiota transplantation. MBio 5: e00893-14.

    • Search Google Scholar
    • Export Citation
  • 78.

    Gomez DE, Arroyo LG, Costa MC, Viel L, Weese JS, 2017. Characterization of the fecal bacterial microbiota of healthy and diarrheic dairy calves. J Vet Intern Med 31: 928939.

    • Search Google Scholar
    • Export Citation
  • 79.

    Jia H 2017. Eggshell membrane powder ameliorates intestinal inflammation by facilitating the restitution of epithelial injury and alleviating microbial dysbiosis. Sci Rep 7: 43993.

    • Search Google Scholar
    • Export Citation
  • 80.

    Lopez VK, Dombecki C, Trostle J, Mogrovejo P, Morillo NC, Cevallos W, Goldstick J, Jones AD, Eisenberg JNS, 2018. Trends of child undernutrition in rural Ecuadorian communities with differential access to roads, 2004–2013. Matern Child Nutr 14: e12588.

    • Search Google Scholar
    • Export Citation
  • 81.

    Trostle JA, Yépez-Montufar JA, Corozo-Angulo B, Rodríguez M, 2010. Diarrheal illnesses on the Ecuadorian coast: socio-environmental changes and health concepts. Cad Saude Publica 26: 13341344.

    • Search Google Scholar
    • Export Citation
  • 82.

    Pazos-Carrillo S, 2010. Permanencias Culturales y Culinarias del Manual de Cocina de Juan Pablo Sanz en Quito (Ecuador): Protocolos, Cocina Tradicional y Formas de Preparación. Master’s Thesis, Universidad Andina Simon Bolivar, Ecuador.

  • 83.

    Bates SJ, Trostle J, Cevallos WT, Hubbard A, Eisenberg JNS, 2007. Relating diarrheal disease to social networks and the geographic configuration of communities in rural Ecuador. Am J Epidemiol 166: 10881095.

    • Search Google Scholar
    • Export Citation
  • 84.

    Ayeni FA 2018. Infant and adult gut microbiome and metabolome in rural Bassa and urban settlers from Nigeria. Cell Rep 23: 30563067.

 

 

 

 

Gut Microbiome Changes with Acute Diarrheal Disease in Urban Versus Rural Settings in Northern Ecuador

View More View Less
  • 1 School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia;
  • 2 School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia;
  • 3 Instituto de Microbiologia, Universidad San Francisco de Quito, Quito, Ecuador;
  • 4 Rollins School of Public Health, Emory University, Atlanta, Georgia;
  • 5 Centro de Biomedicina, Universidad Central del Ecuador, Quito, Ecuador;
  • 6 School of Public Health, University of Washington, Seattle, Washington

Abstract.

Previous studies have reported lower fecal bacterial diversity in urban populations compared with those living in rural settings. However, most of these studies compare geographically distant populations from different countries and even continents. The extent of differences in the gut microbiome in adjacent rural versus urban populations, and the role of such differences, if any, during enteric infections remain poorly understood. To provide new insights into these issues, we sampled the gut microbiome of young children with and without acute diarrheal disease (ADD) living in rural and urban areas in northern Ecuador. Shotgun metagenomic analyses of non-ADD samples revealed small but significant differences in the abundance of microbial taxa, including a greater abundance of Prevotella and a lower abundance of Bacteroides and Alistipes in rural populations. Greater and more significant shifts in taxon abundance, metabolic pathway abundance, and diversity were observed between ADD and non-ADD status when comparing urban to rural sites (Welch’s t-test, P < 0.05). Collectively our data show substantial functional, diversity, and taxonomic shifts in the gut microbiome of urban populations with ADD, supporting the idea that the microbiome of rural populations may be more resilient to ADD episodes.

    • Supplementary Materials

Author Notes

Address correspondence to Konstantinos T. Konstantinidis, School of Civil and Environmental Engineering, Georgia Institute of Technology, 310 Ferst Dr. NW, Atlanta, GA 30332, E-mail: kostas.konstantinidis@gatech.edu or Karen Levy, School of Public Health, University of Washington, Box 351618, 2980 15th Avenue NE, Seattle, WA 98105, E-mail: klevyx@uw.edu.

Disclaimer: The content in this article is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Financial support: This study was supported by the National Institute for Allergy and Infectious Diseases (grant nos. K01AI103544 and R01AI137679) at the U.S. National Institutes of Health. M. S.- G. was supported by a doctoral scholarship from Colciencias, Colombian government.

Authors’ addresses: Maria J. Soto-Girón and Angela Peña-Gonzalez, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, E-mails: dendroapsis@gmail.com and angela.viviana.pena@gmail.com. Janet K. Hatt and Konstantinos T. Konstantinidis, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, E-mails: janet.hatt@ce.gatech.edu and kostas.konstantinidis@gatech.edu. Lorena Montero, Maritza Páez, Estefania Ortega, and Gabriel Trueba, Instituto de Microbiologia, Universidad San Francisco de Quito, Quito, Ecuador, E-mails: lpmonterot@gmail.com, mpaezllerena86@gmail.com, estefania1058@gmail.com, and gtrueba@usfq.edu.ec. Shanon Smith, Rollins School of Public Health, Emory University, Atlanta, GA, E-mail: shanon.smith@emory.edu. Karen Levy, School of Public Health, University of Washington, Seattle, WA, E-mail: klevyx@uw.edu. William Cevallos, Centro de Biomedicina, Universidad Central del Ecuador, Quito, Ecuador, E-mail: wcevallos@usfq.edu.ec.

Save