• 1.

    Dupouy-Camet J, Kociecka W, Bruschi F, Bolas-Fernandez F, Pozio E, 2002. Opinion on the diagnosis and treatment of human trichinellosis. Expert Opin Pharmacother 3: 11171130.

    • Search Google Scholar
    • Export Citation
  • 2.

    Murrell KD, Pozio E, 2011. Worldwide occurrence and impact of human trichinellosis, 1986–2009. Emerg Infect Dis 17: 21942202.

  • 3.

    Pozio E, 2005. The broad spectrum of Trichinella hosts: from cold- to warm-blooded animals. Vet Parasitol 132: 311.

  • 4.

    Pozio E, Darwin Murrell K, 2006. Systematics and epidemiology of trichinella. Adv Parasitol 63: 367439.

  • 5.

    Pozio E, 2007. World distribution of Trichinella spp. infections in animals and humans. Vet Parasitol 149: 321.

  • 6.

    Moorhead A, Grunenwald PE, Dietz VJ, Schantz PM, 1999. Trichinellosis in the United States, 1991–1996: declining but not gone. Am J Trop Med Hyg 60: 6669.

    • Search Google Scholar
    • Export Citation
  • 7.

    Wilson NO, Hall RL, Montgomery SP, Jones JL, 2015. Trichinellosis surveillance--United States, 2008-2012. MMWR Surveill Summ 64: 18.

  • 8.

    Larrat S, Simard M, Lair S, Belanger D, Proulx JF, 2012. From science to action and from action to science: the Nunavik Trichinellosis Prevention Program. Int J Circumpolar Health 71: 18595.

    • Search Google Scholar
    • Export Citation
  • 9.

    Pozio E, 2014. Searching for Trichinella: not all pigs are created equal. Trends Parasitol 30: 411.

  • 10.

    Pozio E, 2015. Trichinella spp. imported with live animals and meat. Vet Parasitol 213: 4655.

  • 11.

    Rostami A, Gamble HR, Dupouy-Camet J, Khazan H, Bruschi F, 2017. Meat sources of infection for outbreaks of human trichinellosis. Food Microbiol 64: 6571.

    • Search Google Scholar
    • Export Citation
  • 12.

    Clausen MR, Meyer CN, Krantz T, Moser C, Gomme G, Kayser L, Albrectsen J, Kapel CM, Bygbjerg IC, 1996. Trichinella infection and clinical disease. QJM 89: 631636.

    • Search Google Scholar
    • Export Citation
  • 13.

    Dupouy-Camet J, Bruschi F, 2007. Management and diagnosis of human trichinellosis. Dupouy-Camet J, Murrell KD, eds. FAO/WHO/OIE guidelines for the surveillance, management, Prevention and Control of Trichinellosis. Paris, France: FAO/WHO/OIE, 3768.

    • Search Google Scholar
    • Export Citation
  • 14.

    Moskwa B, Bien J, Cabaj W, Korinkova K, Koudela B, Stefaniak J, 2009. The comparison of different ELISA procedures in detecting anti-Trichinella IgG in human infections. Vet Parasitol 159: 312315.

    • Search Google Scholar
    • Export Citation
  • 15.

    Gomez-Morales MA, Ludovisi A, Amati M, Blaga R, Zivojinovic M, Ribicich M, Pozio E, 2012. A distinctive Western blot pattern to recognize Trichinella infections in humans and pigs. Int J Parasitol 42: 10171023.

    • Search Google Scholar
    • Export Citation
  • 16.

    Gomez-Morales MA, Ludovisi A, Amati M, Cherchi S, Pezzotti P, Pozio E, 2008. Validation of an enzyme-linked immunosorbent assay for diagnosis of human trichinellosis. Clin Vaccin Immunol 15: 17231729.

    • Search Google Scholar
    • Export Citation
  • 17.

    Chapa-Ruiz MR, Gonzalez-Pantaleon D, Morales-Galan A, Contreras-Ramos A, Salinas-Tobon MR, Martinez YZR, 2001. A follow-up study of the human class and subclass antibody response developed against the adult stage of Trichinella spiralis. Parasite 8: S163S167.

    • Search Google Scholar
    • Export Citation
  • 18.

    Cui J, Wang L, Sun GG, Liu LN, Zhang SB, Liu RD, Zhang X, Jiang P, Wang ZQ, 2015. Characterization of a Trichinella spiralis 31 kDa protein and its potential application for the serodiagnosis of trichinellosis. Acta Trop 142: 5763.

    • Search Google Scholar
    • Export Citation
  • 19.

    Sun GG, Liu RD, Wang ZQ, Jiang P, Wang L, Liu XL, Liu CY, Zhang X, Cui J, 2015. New diagnostic antigens for early trichinellosis: the excretory-secretory antigens of Trichinella spiralis intestinal infective larvae. Parasitol Res 114: 46374644.

    • Search Google Scholar
    • Export Citation
  • 20.

    Bruschi F, Gomez-Morales MA, Hill DE, 2019. International Commission on Trichinellosis: recommendations on the use of serological tests for the detection of Trichinella infection in animals and humans. Food Waterborne Parasitol 14: e00032.

    • Search Google Scholar
    • Export Citation
  • 21.

    Calcagno MA, Forastiero MA, Saracino MP, Vila CC, Venturiello SM, 2017. Serum IgE and IgG4 against muscle larva excretory-secretory products during the early and late phases of human trichinellosis. Parasitol Res 116: 29332939.

    • Search Google Scholar
    • Export Citation
  • 22.

    Anderson JP et al. 2015. Development of a Luminex bead based assay for diagnosis of toxocariasis using recombinant antigens Tc-CTL-1 and Tc-TES-26. PLoS Negl Trop Dis 9: e0004168.

    • Search Google Scholar
    • Export Citation
  • 23.

    Lammie PJ, Moss DM, Brook Goodhew E, Hamlin K, Krolewiecki A, West SK, Priest JW, 2012. Development of a new platform for neglected tropical disease surveillance. Int J Parasitol 42: 797800.

    • Search Google Scholar
    • Export Citation
  • 24.

    Gamble HR, Anderson WR, Graham CE, Murrell KD, 1983. Diagnosis of swine trichinosis by enzyme-linked immunosorbent assay (ELISA) using an excretory--secretory antigen. Vet Parasitol 13: 349361.

    • Search Google Scholar
    • Export Citation
  • 25.

    Gamble HR, Rapic D, Marinculic A, Murrell KD, 1988. Evaluation of excretory-secretory antigens for the serodiagnosis of swine trichinellosis. Vet Parasitol 30: 131137.

    • Search Google Scholar
    • Export Citation
  • 26.

    Murrell KD, Anderson WR, Schad GA, Hanbury RD, Kazacos KR, Gamble HR, Brown J, 1986. Field evaluation of the enzyme-linked immunosorbent assay for swine trichinosis: efficacy of the excretory-secretory antigen. Am J Vet Res 47: 10461049.

    • Search Google Scholar
    • Export Citation
  • 27.

    Hermanson GT, 2008. Bioconjugate Techniques. Burlington, MA: Academic Press.

  • 28.

    Rascoe LN, Price C, Shin SH, McAuliffe I, Priest JW, Handali S, 2015. Development of Ss-NIE-1 recombinant antigen based assays for immunodiagnosis of strongyloidiasis. PLoS Negl Trop Dis 9: e0003694.

    • Search Google Scholar
    • Export Citation
  • 29.

    Tholen DW, Kallner A, Kennedy JW, Krouwer JS, Meier K, 2004. Evaluation of Precision Performance of Quantitative Measurement Methods; Approved Guidelines, 2nd edition. Wayne, PA: NCCLS25. NCCLS document EP5-A2.

    • Search Google Scholar
    • Export Citation
  • 30.

    Administration FaD, 2001. Guidance for Industry. Bioanalytical Method Validation. Center for Drug Evaluation and Research, ed. Rockville, MD: U.S. Department of Health and Human Services.

    • Search Google Scholar
    • Export Citation
  • 31.

    Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Muller M, 2011. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12: 77.

    • Search Google Scholar
    • Export Citation
  • 32.

    Bokken GC, Bergwerff AA, van Knapen F, 2012. A novel bead-based assay to detect specific antibody responses against Toxoplasma gondii and Trichinella spiralis simultaneously in sera of experimentally infected swine. BMC Vet Res 8: 36.

    • Search Google Scholar
    • Export Citation
  • 33.

    van der Wal FJ, Achterberg RP, Kant A, Maassen CB, 2013. A bead-based suspension array for the serological detection of Trichinella in pigs. Vet J 196: 439444.

    • Search Google Scholar
    • Export Citation
  • 34.

    Moskwa B, Bien J, Cabaj W, Korinkova K, Koudela B, Kacprzak E, Stefaniak J, 2006. The estimation of different ELISA procedures for serodiagnosis of human trichinellosis. Wiad Parazytol 52: 231238.

    • Search Google Scholar
    • Export Citation
  • 35.

    van Knapen F, Franchimont JH, Verdonk AR, Stumpf J, Undeutsch K, 1982. Detection of specific immunoglobulins (IgG, IgM, IgA, IgE) and total IgE levels in human trichinosis by means of the enzyme-linked immunosorbent assay (ELISA). Am J Trop Med Hyg 31: 973976.

    • Search Google Scholar
    • Export Citation
  • 36.

    Pinelli E, Van Der Lugt G, Homan W, Van Der Giessen J, Kortbeek LM, 2001. Antigen recognition by IgG4 antibodies in human trichinellosis. Parasite 8: S168S171.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 615 46 13
Full Text Views 262 159 1
PDF Downloads 167 78 1
 
 
 
 
 
 
 
 
 
 
 

A Bead-Based Assay for the Detection of Antibodies against Trichinella spp. Infection in Humans

Ruth KahsayEmory College, Emory University, Atlanta, Georgia;

Search for other papers by Ruth Kahsay in
Current site
Google Scholar
PubMed
Close
,
Maria A. Gómez-MoralesDepartment of Infectious Diseases, Istituto Superiore di Sanita, Rome, Italy;

Search for other papers by Maria A. Gómez-Morales in
Current site
Google Scholar
PubMed
Close
,
Hilda N. RiveraDivision of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia

Search for other papers by Hilda N. Rivera in
Current site
Google Scholar
PubMed
Close
,
Isabel McAuliffeDivision of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia

Search for other papers by Isabel McAuliffe in
Current site
Google Scholar
PubMed
Close
,
Edoardo PozioDepartment of Infectious Diseases, Istituto Superiore di Sanita, Rome, Italy;

Search for other papers by Edoardo Pozio in
Current site
Google Scholar
PubMed
Close
, and
Sukwan HandaliDivision of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia

Search for other papers by Sukwan Handali in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

ABSTRACT

Human trichinellosis can be diagnosed by a combination of medical history, clinical presentation, and laboratory findings, and through detection of anti–Trichinella IgG in the patient’s sera. ELISA using excretory–secretory (E/S) antigens of Trichinella spiralis larvae is currently the most used assay to detect Trichinella spp. antibodies. Bead-based assay can detect antibodies to multiple antigens concurrently; the ability to detect antibody to T. spiralis using a bead assay could be useful for diagnosis and surveillance. We developed and evaluated a bead assay to detect and quantify total IgG or IgG4 Trichinella spp. antibodies in human serum using T. spiralis E/S antigens. The sensitivity and specificity of the assay were determined using serum from 110 subjects with a confirmed diagnosis of trichinellosis, 140 subjects with confirmed infections with other tissue-dwelling parasites, 98 human serum samples from residents of the United States with no known history of parasitic infection, and nine human serum samples from residents of Egypt with negative microscopy for intestinal parasites. Sensitivity and specificity were 93.6% and 94.3% for total IgG and 89.2% and 99.2% for IgG4, respectively. Twelve percent of sera from patients with confirmed schistosomiasis reacted with the IgG Trichinella bead assay, as did 11% of sera from patients with neurocysticercosis. The Trichinella spp. bead assay to detect IgG total antibody responses has a similar performance as the Trichinella E/S ELISA. The Trichinella spp. bead assay shows promise as a method to detect trichinellosis with a possibility to be used in multiplex applications.

Author Notes

Address correspondence to Sukwan Handali, Division of Parasitic Diseases and Malaria, CDC, Roybal Campus, 1600 Clifton Rd., NE, Atlanta, GA 30329. E-mail: ahi0@cdc.gov

Authors' addresses: Ruth Kahsay, Emory College, Emory University, Atlanta, GA, E-mail: ruth.a.kahsay@emory.edu. Maria A. Gómez-Morales and Edoardo Pozio, Department of Infectious Diseases, Istituto Superiore di Sanita, Rome, Italy, E-mails: mariaangeles.gomezmorales@iss.it and edoardo.pozio@iss.it. Hilda B. Rivera, Isabel McAuliffe, and Sukwan Handali, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, E-mails: igi2@cdc.gov, ibm4@cdc.gov, and ahi0@cdc.gov.

Save