• 1.

    Bhatt S 2013. The global distribution and burden of dengue. Nature 496: 504507.

  • 2.

    Soo KM, Khalid B, Ching SM, Chee HY, 2016. Meta-analysis of dengue severity during infection by different dengue virus serotypes in primary and secondary infections. PLoS One 11: e0154760.

    • Search Google Scholar
    • Export Citation
  • 3.

    Katzelnick LC, Gresh L, Halloran ME, Mercado JC, Kuan G, Gordon A, Balmaseda A, Harris E, 2017. Antibody-dependent enhancement of severe dengue disease in humans. Science 358: 929932.

    • Search Google Scholar
    • Export Citation
  • 4.

    Messina JP 2019. The current and future global distribution and population at risk of dengue. Nat Microbiol 4: 15081515.

  • 5.

    Plennevaux E 2018. Impact of dengue vaccination on serological diagnosis: insights from phase III dengue vaccine efficacy trials. Clin Infect Dis 66: 11641172.

    • Search Google Scholar
    • Export Citation
  • 6.

    Vannice KS 2018. Clinical development and regulatory points for consideration for second-generation live attenuated dengue vaccines. Vaccine 36: 34113417.

    • Search Google Scholar
    • Export Citation
  • 7.

    Messina JP, Brady OJ, Pigott DM, Golding N, Kraemer MUG, Scott TW, Wint GRW, Smith DL, Hay SI, 2015. The many projected futures of dengue. Nat Rev Microbiol 13: 230239.

    • Search Google Scholar
    • Export Citation
  • 8.

    Parreira R, Centeno-Lima S, Lopes A, Portugal-Calisto D, Constantino A, Nina J, 2014. Dengue virus serotype 4 and chikungunya virus coinfection in a traveller returning from Luanda, Angola, January 2014. Euro Surveill 19: 20730.

    • Search Google Scholar
    • Export Citation
  • 9.

    Sharma KD, Mahabir RS, Curtin KM, Sutherland JM, Agard JB, Chadee DD, 2014. Exploratory space-time analysis of dengue incidence in Trinidad: a retrospective study using travel hubs as dispersal points, 1998–2004. Parasit Vectors 7: 341.

    • Search Google Scholar
    • Export Citation
  • 10.

    Nunes MRT 2014. Air travel is associated with intracontinental spread of dengue virus serotypes 1–3 in Brazil. PLoS Negl Trop Dis 8: e2769.

    • Search Google Scholar
    • Export Citation
  • 11.

    Siraj AS, Santos-Vega M, Bouma MJ, Yadeta D, Ruiz Carrascal D, Pascual M, 2014. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science 343: 11541158.

    • Search Google Scholar
    • Export Citation
  • 12.

    Granger D, Leo YS, Lee LK, Theel ES, 2017. Serodiagnosis of dengue virus infection using commercially available antibody and NS1 antigen ELISAs. Diagn Microbiol Infect Dis 88: 120124.

    • Search Google Scholar
    • Export Citation
  • 13.

    Dussart P 2006. Evaluation of an enzyme immunoassay for detection of dengue virus NS1 antigen in human serum. Clin Vaccine Immunol 13: 11851189.

    • Search Google Scholar
    • Export Citation
  • 14.

    Pal S, Dauner AL, Mitra I, Forshey BM, Garcia P, Morrison AC, Halsey ES, Kochel TJ, Wu SJ, 2014. Evaluation of dengue NS1 antigen rapid tests and ELISA kits using clinical samples. PLoS One 9: e113411.

    • Search Google Scholar
    • Export Citation
  • 15.

    Mansfield KL, Horton DL, Johnson N, Li L, Barrett ADT, Smith DJ, Galbraith SE, Solomon T, Fooks AR, 2011. Flavivirus-induced antibody cross-reactivity. J Gen Virol 92: 28212829.

    • Search Google Scholar
    • Export Citation
  • 16.

    Rojas A 2018. Internally controlled, multiplex real-time reverse transcription PCR for dengue virus and yellow fever virus detection. Am J Trop Med Hyg 98: 18331836.

    • Search Google Scholar
    • Export Citation
  • 17.

    Sanchez JD, https://www.facebook.com/pahowho. OPS/OMS | Dengue: Información general. Pan American Health Organization/World Health Organization. Available at: https://www.paho.org/hq/index.php?option=com_content&view=article&id=4493:2010-informacion-general-dengue&Itemid=40232&lang=es. Accessed March 21, 2019.

  • 18.

    Jiménez-Silva CL, Carreño MF, Ortiz-Baez AS, Rey LA, Villabona-Arenas CJ, Ocazionez RE, 2018. Evolutionary history and spatio-temporal dynamics of dengue virus serotypes in an endemic region of Colombia. PLoS One 13: e0203090.

    • Search Google Scholar
    • Export Citation
  • 19.

    Restrepo BN, Beatty ME, Goez Y, Ramirez RE, Letson GW, Diaz FJ, Piedrahita LD, Osorio JE, 2014. Frequency and clinical manifestations of dengue in urban Medellin, Colombia. J Trop Med 2014: 872608.

    • Search Google Scholar
    • Export Citation
  • 20.

    Villar LA, Rojas DP, Besada-Lombana S, Sarti E, 2015. Epidemiological trends of dengue disease in Colombia (2000–2011): a systematic review. PLoS Negl Trop Dis 9: e0003499.

    • Search Google Scholar
    • Export Citation
  • 21.

    World Health Organization, 2018. Disease Outbreaks. SEARO. Available at: http://www.searo.who.int/topics/disease_outbreaks/en/. Accessed December 22, 2018.

    • Search Google Scholar
    • Export Citation
  • 22.

    Dirección Nacional de Estadística (DANE), 2019. Proyecciones de población. Available at: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacion. Accessed March 21, 2019.

    • Search Google Scholar
    • Export Citation
  • 23.

    Vázquez EF, Morollón FR, 2013. Defining the Spatial Scale in Modern Regional Analysis: New Challenges from Data at Local Level. Heidelberg, New York, Dordrecht London: Springer Science & Business Media.

    • Search Google Scholar
    • Export Citation
  • 24.

    Ministerio de Salud y Protección Social de Colombia, 2019. INFORME SITUACION DE DENGUE.pdf. Available at: https://minsalud.gov.co/Documentos%20y%20Publicaciones/INFORME%20SITUACION%20DE%20DENGUE.pdf. Accessed May 4, 2019.

    • Search Google Scholar
    • Export Citation
  • 25.

    Shepard DS, Undurraga EA, Halasa YA, Stanaway JD, 2016. The global economic burden of dengue: a systematic analysis. Lancet Infect Dis 16: 935941.

    • Search Google Scholar
    • Export Citation
  • 26.

    Lee JS, 2017. A multi-country study of the economic burden of dengue fever: Vietnam, Thailand, and Colombia. PLoS Negl Trop Dis 11: e0006037.

    • Search Google Scholar
    • Export Citation
  • 27.

    Hadinegoro SRS, 2012. The revised WHO dengue case classification: does the system need to be modified? Paediatr Int Child Health 32: 3338.

    • Search Google Scholar
    • Export Citation
  • 28.

    Moreno HA, Vélez MV, Montoya JD, Rhenals RL, 2006. La Lluvia y los Deslizamientos de tierra en antioquia: análisis de su ocurrencia en las escalas interanual, intraanual y diaria. Rev EIA 2006: 5969.

    • Search Google Scholar
    • Export Citation
  • 29.

    Ladner J, Rodrigues M, Davis B, Besson MH, Audureau E, Saba J, 2017. Societal impact of dengue outbreaks: stakeholder perceptions and related implications. A qualitative study in Brazil, 2015. PLoS Negl Trop Dis 11: e0005366.

    • Search Google Scholar
    • Export Citation
  • 30.

    Arango AE, Jaramillo S, Perez J, Ampuero JS, Espinal D, Donado J, Felices V, Garcia J, Laguna‐Torres A, 2015. Influenza-like illness sentinel surveillance in one hospital in Medellin, Colombia. 2007–2012. Influenza Other Respir Viruses 9: 113.

    • Search Google Scholar
    • Export Citation
  • 31.

    Bowman LR, Runge-Ranzinger S, McCall PJ, 2014. Assessing the relationship between vector indices and dengue transmission: a systematic review of the evidence. PLoS Negl Trop Dis 8: e2848.

    • Search Google Scholar
    • Export Citation
  • 32.

    Wilson ME, Chen LH, 2014. Dengue: update on epidemiology. Curr Infect Dis Rep 17: 457.

  • 33.

    Tan KK, Zulkifle NI, Abd-Jamil J, Sulaiman S, Yaacob CN, Azizan NS, Che Mat Seri NAA, Samsudin NI, Mahfodz NH, AbuBakar S, 2017. Disruption of predicted dengue virus type 3 major outbreak cycle coincided with switching of the dominant circulating virus genotype. Infect Genet Evol 54: 271275.

    • Search Google Scholar
    • Export Citation
  • 34.

    Rajarethinam J 2018. Dengue in Singapore from 2004 to 2016: cyclical epidemic patterns dominated by serotypes 1 and 2. Am J Trop Med Hyg 99: 204210.

    • Search Google Scholar
    • Export Citation
  • 35.

    Low JGH 2011. The early clinical features of dengue in adults: challenges for early clinical diagnosis. PLoS Negl Trop Dis 5: e1191.

  • 36.

    Beltrán-Silva SL, Chacón-Hernández SS, Moreno-Palacios E, Pereyra-Molina , 2018. Clinical and differential diagnosis: dengue, chikungunya and Zika. Rev Médica Hosp Gen México 81: 146153.

    • Search Google Scholar
    • Export Citation
  • 37.

    Stewart-Ibarra AM 2018. The burden of dengue fever and chikungunya in southern coastal Ecuador: epidemiology, clinical presentation, and phylogenetics from the first two years of a prospective study. Am J Trop Med Hyg 98: 14441459.

    • Search Google Scholar
    • Export Citation
  • 38.

    Reller ME, de Silva AM, Miles JJ, Jadi RS, Broadwater A, Walker K, Woods C, Mayorga O, Matute A, 2016. Unsuspected dengue as a cause of acute febrile illness in children and adults in western Nicaragua. PLoS Negl Trop Dis 10: e0005026.

    • Search Google Scholar
    • Export Citation
  • 39.

    Sa-ngamuang C, Haddawy P, Luvira V, Piyaphanee W, Iamsirithaworn S, Lawpoolsri S, 2018. Accuracy of dengue clinical diagnosis with and without NS1 antigen rapid test: comparison between human and Bayesian network model decision. PLoS Negl Trop Dis 12: e0006573.

    • Search Google Scholar
    • Export Citation
  • 40.

    Abhishek KS, Chakravarti A, 2019. Simultaneous detection of IgM antibodies against dengue and chikungunya: coinfection or cross-reactivity? J Fam Med Prim Care 8: 24202423.

    • Search Google Scholar
    • Export Citation
  • 41.

    Felix AC, Souza NCS, Figueiredo WM, Costa AA, Inenami M, da Silva RMG, Levi JE, Pannuti CS, Romano CM, 2017. Cross reactivity of commercial anti-dengue immunoassays in patients with acute Zika virus infection. J Med Virol 89: 14771479.

    • Search Google Scholar
    • Export Citation
  • 42.

    Houghton-Triviño N, Montaña D, Castellanos J, 2008. Dengue-yellow fever sera cross-reactivity; challenges for diagnosis. Rev Salud Pública 10: 299307.

    • Search Google Scholar
    • Export Citation
  • 43.

    Zapata-Vanegas MA, Saturno-Hernández PJ, 2020. Contextual factors favouring success in the accreditation process in Colombian hospitals: a nationwide observational study. BMC Health Serv Res 20: 772.

    • Search Google Scholar
    • Export Citation
  • 44.

    Delmelle E, Hagenlocher M, Kienberger S, Casas I, 2016. A spatial model of socioeconomic and environmental determinants of dengue fever in Cali, Colombia. Acta Trop 164: 169176.

    • Search Google Scholar
    • Export Citation
  • 45.

    Casas I, Delmelle E, 2019. Landscapes of healthcare utilization during a dengue fever outbreak in an urban environment of Colombia. Environ Monit Assess 191: 279.

    • Search Google Scholar
    • Export Citation
  • 46.

    Castillo-Palacio M, Harrill R, Zuñiga-Collazos A, 2017. Back from the brink. Worldw Hosp Tour Themes 9: 300315.

  • 47.

    Vasquez V, Haddad E, Perignon A, Jaureguiberry S, Brichler S, Leparc-Goffart I, Caumes E, 2018. Dengue, chikungunya, and zika virus infections imported to Paris between 2009 and 2016: characteristics and correlation with outbreaks in the French overseas territories of Guadeloupe and Martinique. Int J Infect Dis 72: 3439.

    • Search Google Scholar
    • Export Citation
  • 48.

    Tian E, Sun Z, Faria NR, Yang J, Cazelles B, Huang S, Xu B, Yang Q, Pybus OG, Xu B, 2017. Increasing airline travel may facilitate co-circulation of multiple dengue virus serotypes in Asia. PLoS Negl Trop Dis 11: e0005694.

    • Search Google Scholar
    • Export Citation
  • 49.

    Lana RM, Gomes MFDC, Lima TFM, Honório NA, Codeço CT, 2017. The introduction of dengue follows transportation infrastructure changes in the state of Acre, Brazil: a network-based analysis. PLoS Negl Trop Dis 11: e0006070.

    • Search Google Scholar
    • Export Citation
  • 50.

    Burattini MN, Lopez LF, Coutinho FAB, Siqueira JB Jr, Homsani S, Sarti E, Massad E, 2016. Age and regional differences in clinical presentation and risk of hospitalization for dengue in Brazil, 2000–2014. Clinics 71: 455463.

    • Search Google Scholar
    • Export Citation
  • 51.

    Rojas DP 2018. Epidemiology of dengue and other arboviruses in a cohort of school children and their families in Yucatan, Mexico: baseline and first year follow-up. PLoS Negl Trop Dis 12: e0006847.

    • Search Google Scholar
    • Export Citation
  • 52.

    Dhar-Chowdhury P, Paul KK, Haque CE, Hossain S, Lindsay LR, Dibernardo A, Brooks WA, Drebot MA, 2017. Dengue seroprevalence, seroconversion and risk factors in Dhaka, Bangladesh. PLoS Negl Trop Dis 11: e0005475.

    • Search Google Scholar
    • Export Citation
  • 53.

    Byrne AB, Gutierrez GF, Bruno A, Córdoba MT, Bono MM, Polack FP, Talarico LB, Quipildor MO, 2018. Age-associated differences in clinical manifestations and laboratory parameters during a dengue virus type 4 outbreak in Argentina. J Med Virol 90: 197203.

    • Search Google Scholar
    • Export Citation
  • 54.

    Yew YW, Ye T, Ang LW, Ng LC, Yap G, James L, Chew SK, Goh KT, 2009. Seroepidemiology of dengue virus infection among adults in Singapore. Ann Acad Med Singapore 38: 667675.

    • Search Google Scholar
    • Export Citation
  • 55.

    Yung CF, Chan SP, Thein TL, Chai SC, Leo YS, 2016. Epidemiological risk factors for adult dengue in Singapore: an 8-year nested test negative case control study. BMC Infect Dis 16: 323.

    • Search Google Scholar
    • Export Citation
  • 56.

    Lee P, Yeung ACM, Chen Z, Chan MCW, Sze KH, Chan PKS, 2018. Age-specific seroprevalence of dengue infection in Hong Kong. J Med Virol 90: 14271430.

  • 57.

    Tomashek KM 2017. Clinical and epidemiologic characteristics of dengue and other etiologic agents among patients with acute febrile illness, Puerto Rico, 2012–2015. PLoS Negl Trop Dis 11: e0005859.

    • Search Google Scholar
    • Export Citation
  • 58.

    Mukhtar MU, Mukhtar M, Iqbal N, 2018. Dengue fever is an emerging public health concern in the city of Multan, Pakistan: its seroprevalence and associated risk factors. Microbiol Immunol 62: 729731.

    • Search Google Scholar
    • Export Citation
  • 59.

    Gallego Ortiz S, González EJM, García GA, 2018. Análisis espacial de la informalidad laboral a nivel intra-urbano. ResearchGate. Available at: https://www.researchgate.net/publication/327068663_Analisis_Espacial_de_la_Informalidad_Laboral_a_Nivel_Intra-urbano. Accessed December 17, 2018.

    • Search Google Scholar
    • Export Citation
  • 60.

    Mondini A, 2009. Spatio-temporal tracking and phylodynamics of an urban dengue 3 outbreak in São Paulo, Brazil. PLoS Negl Trop Dis 3: e448.

    • Search Google Scholar
    • Export Citation
  • 61.

    Farinelli EC, Baquero OS, Stephan C, Chiaravalloti-Neto F, 2018. Low socioeconomic condition and the risk of dengue fever: a direct relationship. Acta Trop 180: 4757.

    • Search Google Scholar
    • Export Citation
  • 62.

    Vikram K 2016. An epidemiological study of dengue in Delhi, India. Acta Trop 153: 2127.

  • 63.

    Wojda TR, Valenza PL, Cornejo K, McGinley T, Galwankar SC, Kelkar D, Sharpe RP, Papadimos TJ, Stawicki SP, 2015. The ebola outbreak of 2014–2015: from coordinated multilateral action to effective disease containment, vaccine development, and beyond. J Glob Infect Dis 7: 127138.

    • Search Google Scholar
    • Export Citation
  • 64.

    Farah ZE, Khatib O, Hamadeh S, Ahmad K, El Bazzal B, Zalloua P, Ammar W, Ghosn N, 2018. Containment of highly pathogenic avian influenza A(H5N1) virus, Lebanon, 2016. Emerg Infect Dis 24: 374376.

    • Search Google Scholar
    • Export Citation
  • 65.

    Villela DAM, Bastos LS, Carvalho LMD, Cruz OG, Gomes MFC, Durovni B, Lemos MC, Saraceni V, Coelho FC, Codeço CT, 2017. Zika in Rio de Janeiro: assessment of basic reproduction number and comparison with dengue outbreaks. Epidemiol Infect 145: 16491657.

    • Search Google Scholar
    • Export Citation
  • 66.

    Gregianini TS, Tumioto‐Giannini GL, Favreto C, Plentz LC, Ikuta N, da Veiga ABG, 2018. Dengue in rio grande do sul, Brazil: 2014 to 2016. Rev Med Virol 28: e1960.

    • Search Google Scholar
    • Export Citation
  • 67.

    Li R 2017. Cost-effectiveness of increasing access to contraception during the Zika virus outbreak, Puerto Rico, 2016. Emerg Infect Dis 23: 7482.

    • Search Google Scholar
    • Export Citation
  • 68.

    Faria NR 2017. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 546: 406410.

  • 69.

    Zambrana JV 2018. Seroprevalence, risk factor, and spatial analyses of Zika virus infection after the 2016 epidemic in Managua, Nicaragua. Proc Natl Acad Sci U S A 115: 92949299.

    • Search Google Scholar
    • Export Citation
  • 70.

    Pacheco O 2020. Zika virus disease in Colombia — preliminary report. N Engl J Med 383: e44.

  • 71.

    Alvarez Castaño VH, Guzmán Rodríguez SL, Moreno Segura CM, Trujillo González ÁA, 2017. Indicadores Básicos de Salud 2016 .Alcaldía de Medellín, Colombia: Secretaría de Salud.

    • Search Google Scholar
    • Export Citation
  • 72.

    Steinhagen K 2016. Serodiagnosis of Zika virus (ZIKV) infections by a novel NS1-based ELISA devoid of cross-reactivity with dengue virus antibodies: a multicohort study of assay performance, 2015 to 2016. Eurosurveillance 21: 30426.

    • Search Google Scholar
    • Export Citation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Surveillance and Epidemiology of Dengue in Medellín, Colombia from 2009 to 2017

View More View Less
  • 1 Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia, Medellín, Colombia;
  • 2 Sustainable Sciences Institute (SSI), San Francisco, California

ABSTRACT

Dengue is the most prevalent arthropod-borne viral disease in humans, primarily transmitted by the Aedes aegypti mosquito. We conducted a descriptive analysis of dengue cases from 2009 to 2017 in Medellín, Colombia, using data available from the Secretariat of Health. We analyzed the burden of outbreak years on the healthcare system, risk of cases exhibiting severe illness, potential disease surveillance problems, gender and age as risk factors, and spatiotemporal patterns of disease occurrence. Our data consisted of 50,083 cases, separated based on whether they were diagnostic test negative, diagnostic test positive (primarily IgM ELISA), clinically confirmed, epidemiologically linked, or probable. We used dengue incidence to analyze epidemiological trends between our study years, related to human movement patterns, between gender and age-groups, and spatiotemporally. We used risk to analyze the severity of dengue cases between the study years. We identified human movement could contributed to dengue spread, and male individuals (incidence rate: 0.86; 95% CI: 0.76–0.96) and individuals younger than 15 years (incidence rate: 1.24; 95% CI: 1.13–1.34) have higher incidence of dengue and located critical parts of the city where dengue incidence was high. Analysis was limited by participant diagnostic information, data concerning circulating strains, and a lack of phylogenetic information. Understanding the characteristics of dengue is a fundamental part of improving the health outcomes of at-risk populations. This analysis will be useful to support studies and initiatives to counteract dengue and provide context to the surveillance data collected by the health authorities in Medellín.

    • Supplemental Materials (DOCX 3.66 MB)
    • Supplemental Materials (TIFF 18.54 MB)
    • Supplemental Materials (JPG 799.51 KB)

Author Notes

Address correspondence to Iván Darío Vélez, Programa de Estudio y Control de Enfermedades Tropicales (PECET)-SIU, Calle 62 N 52-59, Medellin 050010, Colombia. E-mail: ivan.velez@udea.edu.co

Authors’ addresses: Colin M. Warnes, Eduardo Santacruz-Sanmartín, and Iván Darío Vélez, PECET, School of Medicine, Universidad de Antioquia, Medellin, Colombia, E-mails: cwarnes@brandeis.edu, santacruzsanmartin@gamil.com, and idvelez@pecet-colombia.org. Fausto Bustos Carrillo, Department of Epidemiology, Sustainable Sciences Institute (SSI), San Francisco, CA, E-mail: bustos.fausto@gmail.com.

Save