Multi-Indicator and Multistep Assessment of Malaria Transmission Risks in Western Kenya

Guofa Zhou Program in Public Health, University of California, Irvine, California;

Search for other papers by Guofa Zhou in
Current site
Google Scholar
PubMed
Close
,
Daibin Zhong Program in Public Health, University of California, Irvine, California;

Search for other papers by Daibin Zhong in
Current site
Google Scholar
PubMed
Close
,
Ming-Chieh Lee Program in Public Health, University of California, Irvine, California;

Search for other papers by Ming-Chieh Lee in
Current site
Google Scholar
PubMed
Close
,
Xiaoming Wang Program in Public Health, University of California, Irvine, California;

Search for other papers by Xiaoming Wang in
Current site
Google Scholar
PubMed
Close
,
Harrysone E. Atieli School of Public Health and Community Development, Maseno University, Kisumu, Kenya;

Search for other papers by Harrysone E. Atieli in
Current site
Google Scholar
PubMed
Close
,
John I. Githure International Center of Excellence in Malaria Research, Tom Mboya University College, Homabay, Kenya;

Search for other papers by John I. Githure in
Current site
Google Scholar
PubMed
Close
,
Andrew K. Githeko Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya;

Search for other papers by Andrew K. Githeko in
Current site
Google Scholar
PubMed
Close
,
James Kazura Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio

Search for other papers by James Kazura in
Current site
Google Scholar
PubMed
Close
, and
Guiyun Yan Program in Public Health, University of California, Irvine, California;

Search for other papers by Guiyun Yan in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT

Malaria risk factor assessment is a critical step in determining cost-effective intervention strategies and operational plans in a regional setting. We develop a multi-indicator multistep approach to model the malaria risks at the population level in western Kenya. We used a combination of cross-sectional seasonal malaria infection prevalence, vector density, and cohort surveillance of malaria incidence at the village level to classify villages into malaria risk groups through unsupervised classification. Generalized boosted multinomial logistics regression analysis was performed to determine village-level risk factors using environmental, biological, socioeconomic, and climatic features. Thirty-six villages in western Kenya were first classified into two to five operational groups based on different combinations of malaria risk indicators. Risk assessment indicated that altitude accounted for 45–65% of all importance value relative to all other factors; all other variable importance values were < 6% in all models. After adjusting by altitude, villages were classified into three groups within distinct geographic areas regardless of the combination of risk indicators. Risk analysis based on altitude-adjusted classification indicated that factors related to larval habitat abundance accounted for 63% of all importance value, followed by geographic features related to the ponding effect (17%), vegetation cover or greenness (15%), and the number of bed nets combined with February temperature (5%). These results suggest that altitude is the intrinsic factor in determining malaria transmission risk in western Kenya. Malaria vector larval habitat management, such as habitat reduction and larviciding, may be an important supplement to the current first-line vector control tools in the study area.

    • Supplemental Materials (PDF 44.71 KB)
    • Supplemental Materials (PDF 81.61 KB)
    • Supplemental Materials (PDF 231.33 KB)
    • Supplemental Materials (PDF 580.30 KB)
    • Supplemental Materials (PDF 454.65 KB)

Author Notes

Address correspondence to Guofa Zhou, Program in Public Health, University of California, Rm. 3066, Hewitt Hall, Irvine, CA 92697. E-mail: zhoug@uci.edu

Disclosure: The funder has no role in study design; collection, management, analysis, and interpretation of data; writing of the report; or the decision to submit the report for publication. The datasets supporting the conclusions of this article are included within the article (and its additional files). Ethical clearance was obtained from the Ethical Review Committee of Maseno University, Kenya (MSU/DRPI/MUERC/00778/19), and the Institutional Review Board (IRB) of the University of California, Irvine, USA (HS# 2017-3512). Written consent was obtained from all adult participants. Written assent for children (< 18 years of age) was obtained from the participants and their parents or guardians. Inclusion criteria were provision of informed consent (assent for children) and no reported chronic or acute illness other than malaria. Exclusion criteria were unwillingness to participate in the study, reported chronic or acute illness other than malaria, or age < 6 months.

Financial support: This study is funded by the National Institutes of Health (R01 A1050243, D43 TW01505, and U19 AI129326).

Authors’ addresses: Guofa Zhou, Daibin Zhong, Ming-Chieh Lee, Xiaoming Wang, and Guiyun Yan, Program in Public Health, University of California at Irvine, Irvine, CA, E-mails: zhoug@uci.edu, dzhong@uci.edu, mingchi1@uci.edu, xiaomiw1@hs.uci.edu, and guiyuny@uci.edu. Harrysone E. Atieli, School of Public Health and Community Development, Maseno University, Kisumu, Kenya, E-mail: etemesi2012@yahoo.com. John I. Githure, International Center of Excellence in Malaria Research, Tom Mboya University College, Homabay, Kenya, E-mail: jgithure@gmail.com. Andrew K. Githeko, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya, E-mail: githeko@yahoo.com. James Kazura, Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, E-mail: jxk14@case.edu.

  • 1.

    WHO , 2019. World Malaria Report 2019. Geneva, Switzerland: World Health Organization.

  • 2.

    Nkumama IN , O’Meara WP , Osier FHA , 2017. Changes in malaria epidemiology in Africa and new challenges for elimination. Trends Parasitol 33: 128140.

    • Search Google Scholar
    • Export Citation
  • 3.

    Rabinovich RN et al. 2017. malERA: an updated research agenda for malaria elimination and eradication. PLoS Med 14: e1002456.

  • 4.

    Vitor-Silva S et al. 2016. Declining malaria transmission in rural Amazon: changing epidemiology and challenges to achieve elimination. Malar J 15: 266.

    • Search Google Scholar
    • Export Citation
  • 5.

    WHO , 2018. Global Report on Insecticide Resistance in Malaria Vectors: 2010–2016. Geneva, Switzerland: World Health Organization.

  • 6.

    WHO , 2015. Global Technical Strategy for Malaria 2016-2030. Geneva, Switzerland: World Health Organization.

  • 7.

    WHO , 2017. A Framework for Malaria Elimination. Geneva, Switzerland: World Health Organization.

  • 8.

    National Malaria Control Programme , 2018. Kenya Malaria Strategy 2019–2023. Nairobi, Kenya: Ministry of Health.

  • 9.

    Mutero CM , Kramer RA , Paul C , Lesser A , Miranda ML , Mboera LE , Kiptui R , Kabatereine N , Ameneshewa B , 2014. Factors influencing malaria control policy-making in Kenya, Uganda and Tanzania. Malar J 13: 305.

    • Search Google Scholar
    • Export Citation
  • 10.

    Zhou G , Lee MC , Githeko AK , Atieli HE , Yan G , 2016. Insecticide-treated net campaign and malaria transmission in western Kenya: 2003–2015. Front Public Health 4: 153.

    • Search Google Scholar
    • Export Citation
  • 11.

    Cook J , Owaga C , Marube E , Baidjoe A , Stresman G , Migiro R , Cox J , Drakeley C , Stevenson JC , 2019. Risk factors for Plasmodium falciparum infection in the Kenyan highlands: a cohort study. Trans R Soc Trop Med Hyg 113: 152159.

    • Search Google Scholar
    • Export Citation
  • 12.

    National Malaria Control Programme (NMCP), Kenya National Bureau of Statistics (KNBS), and ICF International , 2016. Kenya Malaria Indicator Survey 2015. Nairobi, Kenya, and Rockville, MD: NMCP, KNBS, and ICF International.

    • Search Google Scholar
    • Export Citation
  • 13.

    Degefa T , Yewhalaw D , Zhou G , Lee MC , Atieli H , Githeko AK , Yan G , 2017. Indoor and outdoor malaria vector surveillance in western Kenya: implications for better understanding of residual transmission. Malar J 16: 443.

    • Search Google Scholar
    • Export Citation
  • 14.

    Ototo EN , Mbugi JP , Wanjala CL , Zhou G , Githeko AK , Yan G , 2015. Surveillance of malaria vector population density and biting behaviour in western Kenya. Malar J 14: 244.

    • Search Google Scholar
    • Export Citation
  • 15.

    Wanjala CL , Mbugi JP , Ototo E , Gesuge M , Afrane YA , Atieli HE , Zhou G , Githeko AK , Yan G , 2015. Pyrethroid and DDT resistance and organophosphate susceptibility among Anopheles spp. mosquitoes, western Kenya. Emerg Infect Dis 21: 21782781.

    • Search Google Scholar
    • Export Citation
  • 16.

    PMI , 2017. Kenya Malaria Operational Plan FY 2017. USAID, US President’s Malaria Initiative.

  • 17.

    PMI , 2018. Kenya Malaria Operational Plan FY 2018. USAID, US President’s Malaria Initiative.

  • 18.

    PMI , 2019. VectorLink Project Kenya, Annual Entomological Monitoring Report. October 2017–September 2018. Rockville, MD: The PMI VectorLink Project, Abt Associates Inc.

    • Search Google Scholar
    • Export Citation
  • 19.

    Abong’o B et al. 2020. Impact of indoor residual spraying with pirimiphos-methyl (Actellic 300CS) on entomological indicators of transmission and malaria case burden in Migori county, western Kenya. Sci Rep 10: 4518.

    • Search Google Scholar
    • Export Citation
  • 20.

    Killeen GF , Kiware SS , Seyoum A , Gimnig JE , Corliss GF , Stevenson J , Drakeley CJ , Chitnis N , 2014. Comparative assessment of diverse strategies for malaria vector population control based on measured rates at which mosquitoes utilize targeted resource subsets. Malar J 13: 338.

    • Search Google Scholar
    • Export Citation
  • 21.

    Stevenson JC , Stresman GH , Baidjoe A , Okoth A , Oriango R , Owaga C , Marube E , Bousema T , Cox J , Drakeley C , 2015. Use of different transmission metrics to describe malaria epidemiology in the highlands of western Kenya. Malar J 14: 418.

    • Search Google Scholar
    • Export Citation
  • 22.

    Zhou G , Afrane YA , Vardo-Zalik AM , Atieli H , Zhong D , Wamae P , Himeidan YE , Minakawa N , Githeko AK , Yan G , 2011. Changing patterns of malaria epidemiology between 2002 and 2010 in western Kenya: the fall and rise of malaria. PLoS One 6: e20318.

    • Search Google Scholar
    • Export Citation
  • 23.

    Wanjala CL , Waitumbi J , Zhou G , Githeko AK , 2011. Identification of malaria transmission and epidemic hotspots in the western Kenya highlands: its application to malaria epidemic prediction. Parasit Vectors 4: 81.

    • Search Google Scholar
    • Export Citation
  • 24.

    Bousema T et al. 2016. The impact of hotspot-targeted interventions on malaria transmission in Rachuonyo south district in the Western Kenyan highlands: a cluster-randomized controlled trial. PLoS Med 13: e1001993.

    • Search Google Scholar
    • Export Citation
  • 25.

    Parselia E , Kontoes C , Tsouni A , Hadjichristodoulou C , Kioutsioukis I , Magiorkinis G , Stilianakis NI , 2019. Satellite earth observation data in epidemiological modeling of malaria, dengue and west Nile virus: a scoping review. Remote Sens 11: 1862.

    • Search Google Scholar
    • Export Citation
  • 26.

    Bui QT , Nguyen QH , Pham VM , Pham MH , Tran AT , 2018. Understanding spatial variations of malaria in Vietnam using remotely sensed data integrated into GIS and machine learning classifiers. Geocarto Int 6049: 13001314.

    • Search Google Scholar
    • Export Citation
  • 27.

    Solano-Villarreal E et al. 2019. Malaria risk assessment and mapping using satellite imagery and boosted regression trees in the Peruvian Amazon. Sci Rep 9: 15173.

    • Search Google Scholar
    • Export Citation
  • 28.

    Giardina F , Franke J , Vounatsou P , 2015. Geostatistical modelling of the malaria risk in Mozambique: effect of the spatial resolution when using remotely-sensed imagery. Geospat Health 10: 232238.

    • Search Google Scholar
    • Export Citation
  • 29.

    Homan T et al. 2016. Spatially variable risk factors for malaria in a geographically heterogeneous landscape, western Kenya: an explorative study. Malar J 15: 1.

    • Search Google Scholar
    • Export Citation
  • 30.

    Kabaria CW , Molteni F , Mandike R , Chacky F , Noor AM , Snow RW , Linard C , 2016. Mapping intra-urban malaria risk using high resolution satellite imagery: a case study of Dar es Salaam. Int J Health Geogr 15: 26.

    • Search Google Scholar
    • Export Citation
  • 31.

    Valle D , Lima JM , 2014. Large-scale drivers of malaria and priority areas for prevention and control in the Brazilian Amazon region using a novel multi-pathogen geospatial model. Malar J 13: 443.

    • Search Google Scholar
    • Export Citation
  • 32.

    Alimi TO , Fuller DO , Quinones ML , Xue RD , Herrera SV , Arevalo-Herrera M , Ulrich JN , Qualls WA , Beier JC , 2015. Prospects and recommendations for risk mapping to improve strategies for effective malaria vector control interventions in Latin America. Malar J 14: 519.

    • Search Google Scholar
    • Export Citation
  • 33.

    Rijal KR et al. 2019. Micro-stratification of malaria risk in Nepal: implications for malaria control and elimination. Trop Med Health 47: 21.

    • Search Google Scholar
    • Export Citation
  • 34.

    Taffese HS , Hemming-Schroeder E , Koepfli C , Tesfaye G , Lee MC , Kazura J , Yan G , Zhou G , 2018. Malaria epidemiology and interventions in Ethiopia from 2001 to 2016. Infect Dis Poverty 7: 103.

    • Search Google Scholar
    • Export Citation
  • 35.

    Drakeley C et al. 2017. Longitudinal estimation of Plasmodium falciparum prevalence in relation to malaria prevention measures in six sub-Saharan African countries. Malar J 16: 433.

    • Search Google Scholar
    • Export Citation
  • 36.

    Zhou G , Afrane YA , Malla S , Githeko AK , Yan G , 2015. Active case surveillance, passive case surveillance and asymptomatic malaria parasite screening illustrate different age distribution, spatial clustering and seasonality in western Kenya. Malar J 14: 41.

    • Search Google Scholar
    • Export Citation
  • 37.

    Zhou G , Wiseman V , Atieli HE , Lee MC , Githeko AK , Yan G , 2016. The impact of long-lasting microbial larvicides in reducing malaria transmission and clinical malaria incidence: study protocol for a cluster randomized controlled trial. Trials 17: 423.

    • Search Google Scholar
    • Export Citation
  • 38.

    Lo E , Nguyen K , Nguyen J , Hemming-Schroeder E , Xu J , Etemesi H , Githeko A , Yan G , 2017. Plasmodium malariae prevalence and csp gene diversity, Kenya, 2014 and 2015. Emerg Infect Dis 23: 601610.

    • Search Google Scholar
    • Export Citation
  • 39.

    Gillies MT , Coetzee M , 1987. A Supplement to the Anophelinae of Africa South of the Sahara (Afro-Tropical Region), Vol. 55. Johannesburg, South Africa: South African Institute for Medical Research.

    • Search Google Scholar
    • Export Citation
  • 40.

    Ndenga B , Githeko A , Omukunda E , Munyekenye G , Atieli H , Wamai P , Mbogo C , Minakawa N , Zhou G , Yan G , 2006. Population dynamics of malaria vectors in western Kenya highlands. J Med Entomol 43: 200206.

    • Search Google Scholar
    • Export Citation
  • 41.

    Munga S , Minakawa N , Zhou G , Githeko AK , Yan G , 2007. Survivorship of immature stages of Anopheles gambiae s.l. (Diptera: Culicidae) in natural habitats in western Kenya highlands. J Med Entomol 44: 758764.

    • Search Google Scholar
    • Export Citation
  • 42.

    Witten IH , Frank E , Hall MA , Pal CJ , 2016. Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems), 4th edition. Cambridge, MA: Morgan Kaufmann.

    • Search Google Scholar
    • Export Citation
  • 43.

    Abdi H , Williams LJ , 2010. Principal component analysis. Wiley Interdiscip Rev Comput Stat 2: 433459.

  • 44.

    Jolliffe IT , Cadima J , 2016. Principal component analysis: a review and recent development. Phil Trans R Soc 374: 20150202.

  • 45.

    Kassambara A , 2017. Practical Guide to Principal Component Methods in R. CreateSpace Independent Publishing Platform, Kindle online Edition.

    • Search Google Scholar
    • Export Citation
  • 46.

    Martínez-Rincón PO , Ortega-García S , Vaca-Rodríguez JG , 2012. Comparative performance of generalized additive models and boosted regression trees for statistical modeling of incidental catch of wahoo (Acanthocybium solandri) in the Mexican tuna purse-seine fishery. Ecol Model 233: 2025.

    • Search Google Scholar
    • Export Citation
  • 47.

    Ridgeway G , 2010. Gbm: Generalized Boosted Regression Models. R Package Version 1.6–3.1. Available at: http://CRAN.R-project.org/package=gbm. Accessed May 10, 2020.

    • Search Google Scholar
    • Export Citation
  • 48.

    Hay SI , Smith DL , Snow RW , 2008. Measuring malaria endemicity from intense to interrupted transmission. Lancet Infect Dis 8: 369378.

  • 49.

    Snow RW et al. 1997. Relation between severe malaria morbidity in children and level of Plasmodium falciparum transmission in Africa. Lancet 349: 16501654.

    • Search Google Scholar
    • Export Citation
  • 50.

    Macharia PM , Giorgi E , Noor AM , Waqo E , Kiptui R , Okiro EA , Snow RW , 2018. Spatio-temporal analysis of Plasmodium falciparum prevalence to understand the past and chart the future of malaria control in Kenya. Malar J 17: 340.

    • Search Google Scholar
    • Export Citation
  • 51.

    Kapesa A , Kweka EJ , Atieli H , Afrane YA , Kamugisha E , Lee MC , Zhou G , Githeko AK , Yan G , 2018. The current malaria morbidity and mortality in different transmission settings in Western Kenya. PLoS One 13: e0202031.

    • Search Google Scholar
    • Export Citation
  • 52.

    Hansen B , Schjønning P , Sibbesen E , 1999. Roughness indices for estimation of depression storage capacity of tilled soil surfaces. Soil Tillage Res 52: 103111.

    • Search Google Scholar
    • Export Citation
  • 53.

    Zhao L , Hou R , Wu F , Keesstra S , 2018. Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments. Soil Tillage Res 179: 4753.

    • Search Google Scholar
    • Export Citation
  • 54.

    Amadi JA , Olago DO , Ong’amo GO , Oriaso SO , Nanyingi M , Nyamongo IK , Estambale BBA , 2018. Sensitivity of vegetation to climate variability and its implications for malaria risk in Baringo, Kenya. PLoS One 13: e0199357.

    • Search Google Scholar
    • Export Citation
  • 55.

    Rueda LM , Brown TL , Kim HC , Chong ST , Klein TA , Foley DH , Anyamba A , Smith M , Pak EP , Wilkerson RC , 2010. Species composition, larval habitats, seasonal occurrence and distribution of potential malaria vectors and associated species of Anopheles (Diptera: Culicidae) from the Republic of Korea. Malar J 9: 55.

    • Search Google Scholar
    • Export Citation
  • 56.

    Zhou G , Li JS , Ototo EN , Atieli HE , Githeko AK , Yan G , 2014. Evaluation of universal coverage of insecticide-treated nets in western Kenya: field surveys. Malar J 13: 351.

    • Search Google Scholar
    • Export Citation
  • 57.

    Atieli HE , Zhou G , Afrane Y , Lee MC , Mwanzo I , Githeko AK , Yan G , 2011. Insecticide-treated net (ITN) ownership, usage, and malaria transmission in the highlands of western Kenya. Parasit Vectors 4: 113.

    • Search Google Scholar
    • Export Citation
  • 58.

    Hu MQ , Mao F , Sun H , Hou YY , 2011. Study of normalized difference vegetation index variation and its correlation with climate factors in the three-river-source region. Int J Appl Earth Obs Geoinfo 13: 2433.

    • Search Google Scholar
    • Export Citation
  • 59.

    Schultz PA , Halpert MS , 1993. Global correlation of temperature, NDVI and precipitation. Adv Space Res 13: 277280.

  • 60.

    Chicco D , 2017. Ten quick tips for machine learning in computational biology. BioData Mining 10: 35.

  • 61.

    Freedman DA , 2009. Statistical Models: Theory and Practice. Cambridge, MA: Cambridge University Press.

  • 62.

    Tibshirani R , 1996. Regression shrinkage and selection via the Lasso. J Roy Stat Soc B 58: 267288.

  • 63.

    Warne RT , 2011. Beyond multiple regression: using commonality analysis to better understand R2 results. Gifted Child Quart 55: 313318.

    • Search Google Scholar
    • Export Citation
  • 64.

    Zhou G , Munga S , Minakawa N , Githeko AK , Yan G , 2007. Spatial relationship between adult malaria vector abundance and environmental factors in western Kenya highlands. Am J Trop Med Hyg 77: 2935.

    • Search Google Scholar
    • Export Citation
  • 65.

    Kahindi SC , Muriu S , Derua YA , Wang X , Zhou G , Lee MC , Mwangangi J , Atieli H , Githeko AK , Yan G , 2018. Efficacy and persistence of long-lasting microbial larvicides against malaria vectors in western Kenya highlands. Parasit Vectors 11: 438.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 865 86 9
Full Text Views 460 231 0
PDF Downloads 236 84 0
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save