• 1.

    Igwaran A, Okoh AI, 2019. Human campylobacteriosis: a public health concern of global importance. Heliyon 5: e02814.

  • 2.

    Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM, 2015. Global epidemiology of Campylobacter infection. Clin Microbiol Rev 28: 687720.

  • 3.

    Amour C 2006. Epidemiology and impact of Campylobacter infection in children in 8 low-resource settings: results from the MAL-ED study. Clin Infect Dis 63: 11711179.

    • Search Google Scholar
    • Export Citation
  • 4.

    Platts-Mills JA 2014. Detection of Campylobacter in stool and determination of significance by culture, enzyme immunoassay, and PCR in developing countries. J Clin Microbiol 52: 10741080.

    • Search Google Scholar
    • Export Citation
  • 5.

    Liu J 2016. Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: a reanalysis of the GEMS case-control study. Lancet 388: 12911301.

    • Search Google Scholar
    • Export Citation
  • 6.

    Rogawski ET 2018. Use of quantitative molecular diagnostic methods to investigate the effect of enteropathogen infections on linear growth in children in low-resource settings: longitudinal analysis of results from the MAL-ED cohort study. Lancet Glob Heal 6: e1319e1328.

    • Search Google Scholar
    • Export Citation
  • 7.

    O’Brien SJ, 2017. The consequences of Campylobacter infection. Curr Opin Gastroenterol 33: 1420.

  • 8.

    Saps M, Pensabene L, Di Martino L, Staiano A, Wechsler J, Zheng X, Di Lorenzo C, 2008. Functional gastrointestinal disorders in children. J Pediatr 156: 812816.

    • Search Google Scholar
    • Export Citation
  • 9.

    Epps SVR, Harvey RB, Hume ME, Phillips TD, Anderson RC, Nisbet DJ, 2013. Foodborne Campylobacter: infections, metabolism, pathogenesis and reservoirs. Int J Environ Res Public Health 10: 62926304.

    • Search Google Scholar
    • Export Citation
  • 10.

    Fitzgerald C, 2015. Campylobacter. Clin Lab Med 35: 289298.

  • 11.

    Piperata BA, Lee S, Mayta Apaza AC, Cary A, Vilchez S, Oruganti P, Garabed R, Wilson W, Lee J, 2020. Characterization of the gut microbiota of Nicaraguan children in a water insecure context. Am J Hum Biol 32: 118.

    • Search Google Scholar
    • Export Citation
  • 12.

    François R 2018. The other Campylobacters: not innocent bystanders in endemic diarrhea and dysentery in children in low-income settings. PLoS Negl Trop Dis 12: e0006200.

    • Search Google Scholar
    • Export Citation
  • 13.

    Castañeda S, 2017. Indicadores No Monetarios de Pobreza: Avances y Desafíos para su Medición. UN-CEPAL. ISSN: 1680-9041. Available at: https://repositorio.cepal.org/bitstream/handle/11362/43140/S1701175_es.pdf?sequence=1%26isAllowed=y.

  • 14.

    Liu J 2014. Development and assessment of molecular diagnostic tests for 15 enteropathogens causing childhood diarrhoea: a multicentre study. Lancet Infect Dis 14: 716724.

    • Search Google Scholar
    • Export Citation
  • 15.

    Stevenson M, Nunes T, Sanchez J, Thornton R, Reiczigel J, Robison-Cox J, Sebastiani P, 2013. EpiR: An R Package for the Analysis of Epidemiological Data, 9–43. Available at: http://epicentre.massey.ac.nz.

  • 16.

    Coughlin SS, Benichou J, Weed DL, 1994. Attributable risk estimation in case-control studies. Epidemiol Rev 16: 5164.

  • 17.

    Alam K, Lastovica AJ, Le Roux E, Hossain MA, Islam MN, Sen SK, Sur GC, Nair GB, Sack DA, 2006. Clinical characteristics and serotype distribution of Campylobacter jejuni and Campylobacter coli isolated from diarrhoeic patients in Dhaka, Bangladesh, and Cape Town, South Africa. Bangladesh J Microbiol 23: 121124.

    • Search Google Scholar
    • Export Citation
  • 18.

    De Boer RF, Ott A, Güren P, Van Zanten E, Van Belkum A, Kooistra-Smid AMD, 2013. Detection of Campylobacter species and Arcobacter butzleri in stool samples by use of real-time multiplex PCR. J Clin Microbiol 51: 253259.

    • Search Google Scholar
    • Export Citation
  • 19.

    Nielsen HL, Ejlertsen T, Engberg J, Nielsen H, 2013. High incidence of Campylobacter concisus in gastroenteritis in North Jutland, Denmark: a population-based study. Clin Microbiol Infect 19: 445450.

    • Search Google Scholar
    • Export Citation
  • 20.

    Fullerton KE 2007. Sporadic Campylobacter infection in infants: a population-based surveillance case-control study. Pediatr Infect Dis J 26: 1924.

    • Search Google Scholar
    • Export Citation
  • 21.

    Mughini Gras L, Smid JH, Wagenaar JA, de Boer AG, Havelaar AH, Friesema IHM, French NP, Busani L, van Pelt W, 2012. Risk factors for campylobacteriosis of chicken, ruminant, and environmental origin: a combined case-control and source attribution analysis. PLoS One 7: e42599.

    • Search Google Scholar
    • Export Citation
  • 22.

    Lindmark H, Boqvist S, Ljungström M, Ågren P, Björkholm B, Engstrand L, 2009. Risk factors for campylobacteriosis: an epidemiological surveillance study of patients and retail poultry. J Clin Microbiol 47: 26162619.

    • Search Google Scholar
    • Export Citation
  • 23.

    Friedman CR 2004. Risk factors for sporadic Campylobacter infection in the United States: a case‐control study in FoodNet sites. Clin Infect Dis 38 (Suppl 3): S285S296.

    • Search Google Scholar
    • Export Citation
  • 24.

    Corry JEL, Atabay HI, 2001. Poultry as a source of Campylobacter and related organisms. J Appl Microbiol 90: 96S114S.

  • 25.

    Harris NV, Weiss NS, Nolan CM, 1986. The role of poultry and meats in the etiology of Campylobacter jejuni/coli enteritis. Am J Public Health 76: 407411.

    • Search Google Scholar
    • Export Citation
  • 26.

    Camarda J 2018. Salud Mesoamérica Initiative-Nicaragua Household Census and Survey Data Quality Report Second Follow-up Measurement. SMI. Available at: https://www.saludmesoamerica.org/sites/default/files/open-data/Nicaragua%202nd%20Operation%20Household%20Survey%20Data%20Quality%20Report%20SMI.pdf.

  • 27.

    Camarda J 2018. Salud Mesoamérica Initiative-Guatemala Household Census and Survey Data Quality Report Second Follow-up Measurement. SMI. Available at: https://www.saludmesoamerica.org/sites/default/files/open-data/Guatemala%202nd%20Operation%20Household%20Survey%20Data%20Quality%20Report%20SMI.pdf.

  • 28.

    Camarda J 2018. Salud Mesoamérica Initiative-Honduras Household Census and Survey Data Quality Report Second Follow-up Measurement. SMI. Available at: https://www.saludmesoamerica.org/sites/default/files/open-data/Honduras%202nd%20Operation%20Household%20Survey%20Data%20Quality%20Report%20SMI.pdf.

  • 29.

    Prendergast AJ 2019. Putting the “A” into WaSH: a call for integrated management of water, animals, sanitation, and hygiene. Lancet Planet Health 3: e336e337.

    • Search Google Scholar
    • Export Citation
  • 30.

    Malomo GA, Madugu AS, Bolu SA, 2018. Sustainable Animal Manure Management Strategies and Practices, Agricultural Waste and Residues, Anna Aladjadjiyan, IntechOpen. DOI: 10.5772/intechopen.78645. Available at: https://www.intechopen.com/books/agricultural-waste-and-residues/sustainable-animal-manure-management-strategies-and-practices.

  • 31.

    Kittl S, Heckel G, Korczak BM, Kuhnert P, 2013. Source attribution of human Campylobacter isolates by MLST and fla-typing and association of genotypes with quinolone resistance. PLoS One 8: e81796.

    • Search Google Scholar
    • Export Citation
  • 32.

    Stanley KN, Wallace JS, Currie JE, Diggle PJ, Jones K, 1998. The seasonal variation of thermophilic Campylobacters in beef cattle, dairy cattle and calves. J Appl Microbiol 85: 472480.

    • Search Google Scholar
    • Export Citation
  • 33.

    Raji MA, Adekeye JO, Kwaga JKP, Bale JOO, 2000. Bioserogroups of Campylobacter species isolated from sheep in Kaduna state, Nigeria. Small Rumin Res 37: 215221.

    • Search Google Scholar
    • Export Citation
  • 34.

    Baker J, Barton MD, Lanser J, 1999. Campylobacter species in cats and dogs in south Australia. Aust Vet J 77: 662666.

  • 35.

    Cumming O 2019. The implications of three major new trials for the effect of water, sanitation and hygiene on childhood diarrhea and stunting: a consensus statement. BMC Med 17: 173.

    • Search Google Scholar
    • Export Citation
  • 36.

    Null C 2018. Effects of water quality, sanitation, handwashing, and nutritional interventions on diarrhoea and child growth in rural Kenya: a cluster-randomised controlled trial. Lancet Glob Health 6: E316E329.

    • Search Google Scholar
    • Export Citation
  • 37.

    Humphrey JH 2019. Independent and combined effects of improved water, sanitation, and hygiene, and improved complementary feeding, on child stunting and anaemia in rural Zimbabwe: a cluster-randomised trial. Lancet Glob Health 7: E132E147.

    • Search Google Scholar
    • Export Citation
  • 38.

    Luby SP 2018. Effects of water quality, sanitation, handwashing, and nutritional interventions on diarrhoea and child growth in rural Bangladesh: a cluster randomised controlled trial. Lancet Glob Health 6: E302E315.

    • Search Google Scholar
    • Export Citation
  • 39.

    Man SM, 2011. The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol Hepatol 8: 669685.

  • 40.

    de Massis F, Calistri P, Di Donato G, Iannetti S, Neri D, Persiani T, Di Giannatale E, Cammà C, 2018. Campylobacter infection occurrence in canine population in Italy. Int J Infect Dis 73: 146.

    • Search Google Scholar
    • Export Citation
  • 41.

    Porter CK, Tribble DR, Aliaga PA, Halvorson HA, Riddle MS, 2008. Infectious gastroenteritis and risk of developing inflammatory bowel disease. Gastroenterology 135: 781786.

    • Search Google Scholar
    • Export Citation
  • 42.

    Buccigrossi V, Nicastro E, Guarino A, 2013. Functions of intestinal microflora in children. Curr Opin Gastroenterol 29: 3138.

  • 43.

    Kampmann C, Dicksved J, Engstrand L, Rautelin H, 2016. Composition of human faecal microbiota in resistance to Campylobacter infection. Clin Microbiol Infect 22: 61.e161.e8.

    • Search Google Scholar
    • Export Citation
  • 44.

    Freedman SB 2018. Multicenter trial of a combination probiotic for children with gastroenteritis. N Engl J Med 379: 20152026.

  • 45.

    Sur D 2011. Role of probiotic in preventing acute diarrhoea in children: a community-based, randomized, double-blind placebo-controlled field trial in an urban slum. Epidemiol Infect 139: 919926.

    • Search Google Scholar
    • Export Citation
  • 46.

    Zambrana LE 2019. Rice bran supplementation modulates growth, microbiota and metabolome in weaning infants: a clinical trial in Nicaragua and Mali. Sci Rep 9: 13919.

    • Search Google Scholar
    • Export Citation
  • 47.

    Platts-Mills JA 2015. Pathogen-specific burdens of community diarrhoea in developing countries: a multisite birth cohort study (MAL-ED). Lancet Glob Health 3: e564e575.

    • Search Google Scholar
    • Export Citation

 

 

 

 

Clinical Characteristics, Risk Factors, and Population Attributable Fraction for Campylobacteriosis in a Nicaraguan Birth Cohort

View More View Less
  • 1 Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina;
  • 2 Department of Microbiology and Parasitology, Center of Infectious Diseases, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua;
  • 3 Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina;
  • 4 Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

ABSTRACT

Campylobacteriosis is an important contributor to the global burden of acute gastroenteritis (AGE). In Nicaragua, the burden, risk factors, and species diversity for infant campylobacteriosis are unknown. Between June 2017 and December 2018, we enrolled 444 infants from León, Nicaragua, in a population-based birth cohort, conducting weekly household AGE surveillance. First, we described clinical characteristics of symptomatic Campylobacter infections, and then compared clinical characteristics between Campylobacter jejuni/coli and non-jejuni/coli infections. Next, we conducted a nested case–control analysis to examine campylobacteriosis risk factors. Finally, we estimated the population attributable fraction of campylobacteriosis among infants experiencing AGE. Of 296 AGE episodes in the first year of life, Campylobacter was detected in 59 (20%), 39 were C. jejuni/coli, and 20 were non-jejuni/coli species, including the first report of Campylobacter vulpis infection in humans. Acute gastroenteritis symptoms associated with C. jejuni/coli lasted longer than those attributed to other Campylobacter species. In a conditional logistic regression model, chickens in the home (odds ratio [OR]: 3.8, 95% CI: 1.4–9.8), a prior AGE episode (OR: 3.3; 95% CI: 1.4–7.8), and poverty (OR: 0.4; 95% CI: 0.2–0.9) were independently associated with campylobacteriosis. Comparing 90 infants experiencing AGE with 90 healthy controls, 22.4% (95% CI: 11.2–32.1) of AGE episodes in the first year of life could be attributed to Campylobacter infection. Campylobacter infections contribute substantially to infant AGE in León, Nicaragua, with non-jejuni/coli species frequently detected. Reducing contact with poultry in the home and interventions to prevent all-cause AGE may reduce campylobacteriosis in this setting.

    • Supplemental Materials (DOCX 22.02 KB)

Author Notes

Address correspondence to Samuel Vilchez, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua 00068. E-mail: samuelvilchez@gmail.com

Financial support: This work was supported by the National Institute of Allergy and Infectious Diseases at the National Institutes of Health (R01AI127845 and K24AI141744 to S. B.-D. and S. V.) and the Fogarty International Center (D43TW010923 to C. P., L. G., F. G., and Y. R.).

Authors’ addresses: Denise T. St. Jean, Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel, Hill, NC, E-mail: denise.st.jean@unc.edu. Roberto Herrera, Claudia Pérez, Lester Gutiérrez, Fredman González, Yaoska Reyes, Christian Toval-Ruiz, Patricia Blandón, Filemón Bucardo, and Samuel Vilchez, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua, E-mails: robertojhgarcia@gmail.com, claudiaperro87@yahoo.com, gutierrezperez02@yahoo.es, frewey14@yahoo.com, yaobel@hotmail.es, chris0412toval@gmail.com, anablandon98@hotmail.com, fili_bucardo@hotmail.com, and samuelvilchez@gmail.com. Nadja A. Vielot and Sylvia Becker-Dreps, Department of Family Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, E-mails: vielot@email.unc.edu and sbd@email.unc.edu. Oksana Kharabora and Natalie M. Bowman, Division of Infectious Diseases, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, E-mails: kharabor@email.unc.edu and natalie_bowman@med.unc.edu.

These authors contributed equally to this work.

These authors contributed equally to this work.

Save