• 1.

    Leak SGA, 1998. Tsetse Biology and Ecology: Their Role in the Epidemiology and Control of Trypanosomiasis. Wallingford, United Kingdom: CABI publishing in Association with ILRI, 316.

    • Search Google Scholar
    • Export Citation
  • 2.

    WHO, 2020. The Elimination of Human African Trypanosomiasis Is in Sight: Report from the Third WHO Stakeholders Meeting on Elimination of Gambiense Human African Trypanosomiasis, Vol. 12. Geneva, Switzerland: World Health Organization.

    • Search Google Scholar
    • Export Citation
  • 3.

    Franco J, Cecchi G, Priotto G, Paone M, Diarra A, Grout L, Simarro PP, Zhao W, Argaw D, 2020. Monitoring the elimination of human African trypanosomiasis at continental and country level: update to 2018. PLoS Negl Trop Dis 14: e0008261.

    • Search Google Scholar
    • Export Citation
  • 4.

    Simarro P, Jannin J, Cattand P, 2008. Eliminating human African trypanosomiasis: where do we stand and what comes next? PLoS Med 5: e55.

  • 5.

    Solano P, Torr SJ, Lehane MJ, 2013. Is vector control needed to eliminate gambiense human African trypanosomiasis? Front Cell Infect Microbiol 3: 33.

    • Search Google Scholar
    • Export Citation
  • 6.

    Simarro P, Cecchi G, Franco JR, Paone M, Diarra A, Ruiz-Postigo JA, Fèvre EM, Mattioli RC, Jannin JG, 2012. Estimating and mapping the population at risk of sleeping sickness. PLoS Negl Trop Dis 6: e1859.

    • Search Google Scholar
    • Export Citation
  • 7.

    Simarro PP, Cecchi G, Paone M, Franco JR, Diarra A, Ruiz JA, Fèvre EM, Courtin F, Mattioli RC, Jannin JG, 2010. The Atlas of human African trypanosomiasis: a contribution to global mapping of neglected tropical diseases. Int J Health Geogr 9: 57.

    • Search Google Scholar
    • Export Citation
  • 8.

    Duteurtre JP, Gouteux JP, 1986. Les strategies de lutte antisommeilleuse en republique populaire du Congo. Med Trop 46: 375380.

  • 9.

    Gouteux JP, Toudic A, Sinda D, 1988. Utilisation D’animaux sentinelles dans L’evaluation de La lutte contre les vecteurs de La Maladie du sommeil. Premiers resultats dans un foyer congolais. Acta Trop 45: 331338.

    • Search Google Scholar
    • Export Citation
  • 10.

    Gouteux JP, Noireau F, 1986. Un nouvel écran‐piège pour la lutte anti‐tsétsé: description et essais dans un foyer congolais de trypanosomiase humaine. Entomol Exp Appl 41: 291297.

    • Search Google Scholar
    • Export Citation
  • 11.

    Noireau F, Okamba-Osseke F, Gouteux JP, 1990. Impact immédiat d’une lutte antivectorielle par piégeage sur I’enzootie de trypanosomose au Sud-Congo. Revue Revue Élev Méd Vét Pays Trop 43: 9396.

    • Search Google Scholar
    • Export Citation
  • 12.

    Bouyer J, Dicko AH, Cecchi G, Ravel S, Guerrini L, Solano P, Vreysen MJ, De Meeus T, Lancelot R, 2015. Mapping landscape friction to locate isolated tsetse populations that are candidates for elimination. Proc Natl Acad Sci U S A 112: 1457514580.

    • Search Google Scholar
    • Export Citation
  • 13.

    Dyer NA 2011. Cryptic diversity within the major trypanosomiasis vector Glossina fuscipes revealed by molecular markers. PLoS Negl Trop Dis 5: e1266.

    • Search Google Scholar
    • Export Citation
  • 14.

    Kato AB, Hyseni C, Okedi LM, Ouma JO, Aksoy S, Caccone A, Masembe C, 2015. Mitochondrial DNA sequence divergence and diversity of Glossina fuscipes fuscipes in the Lake Victoria basin of Uganda: implications for control. Parasit Vectors 8: 385.

    • Search Google Scholar
    • Export Citation
  • 15.

    Kaboyo JP, 2002. Aiming to eliminate tsetse from Africa. Trends Parasitol 18: 473475.

  • 16.

    Meeûs TDe, Ravel S, Rayaisse J, Kaba D, Courtin F, Bouyer J, Dayo GK, Camara M, Solano P, 2014. Genetic correlations within and between isolated tsetse populations. Acta Trop 138: S6S11.

    • Search Google Scholar
    • Export Citation
  • 17.

    De Meeus T, Bouyer J, Ravel S, Solano P, 2015. Ecotype evolution in Glossina palpalis subspecies, major vectors of sleeping sickness. PLoS Negl Trop Dis 9: e0003497.

    • Search Google Scholar
    • Export Citation
  • 18.

    Dyer NA 2009. Evidence for a discrete evolutionary lineage within equatorial Guinea suggests that the tsetse fly Glossina palpalis palpalis exists as a species complex. Mol Ecol 18: 32683282.

    • Search Google Scholar
    • Export Citation
  • 19.

    De Meeûs T, Ravel S, Rayaisse JB, Kaba D, Courtin F, Bouyer J, Dayo GK, Camara M, Solano P, 2014. Genetic correlations within and between isolated tsetse populations: what can we learn? Acta Trop 138: S6S11.

    • Search Google Scholar
    • Export Citation
  • 20.

    Mayoke A, Muya SM, Bateta R, Mireji PO, Okoth SO, Onyoyo SG, Auma JE, Ouma JO, 2020. Genetic diversity and phylogenetic relationships of tsetse flies of the palpalis group in Congo Brazzaville based on mitochondrial cox1 gene sequences. Parasit Vectors 13: 253.

    • Search Google Scholar
    • Export Citation
  • 21.

    Oliveira DCSG, Raychoudhury R, Lavrov DV, Werren JH, 2008. Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). Mol Biol Evol 25: 21672180.

    • Search Google Scholar
    • Export Citation
  • 22.

    Sun JT, Jin PY, Hoffmann AA, Duan XZ, Dai J, Hu G, Xue XF, Hong XY, 2018. Evolutionary divergence of mitochondrial genomes in two Tetranychus species distributed across different climates. Insect Mol Biol 27: 698709.

    • Search Google Scholar
    • Export Citation
  • 23.

    Opiro R, Saarman NP, Echodu R, Opiyo EA, Dion K, Halyard A, Dunn AW, Aksoy S, Caccone A, 2017. Genetic diversity and population structure of the tsetse fly Glossina fuscipes fuscipes (Diptera: Glossinidae) in northern Uganda: implications for vector control. PLoS Negl Trop Dis 11: e0005485.

    • Search Google Scholar
    • Export Citation
  • 24.

    Isaac C, Ciosi M, Hamilton A, Scullion KM, Dede P, Igbinosa IB, Patrick O, Nmorsi G, Masiga D, Turner CMR, 2016. Molecular identification of different trypanosome species and subspecies in tsetse flies of northern Nigeria. Parasit Vectors 9: 301.

    • Search Google Scholar
    • Export Citation
  • 25.

    Omondi SF, Machua J, Muturi GM, Gicheru JM, Hanaoka S, 2019. Evidence of high genetic diversity and significant population structuring in Vachellia tortilis (Forsk.) Galasso & Banfi population in Kenya. Ann For Sci 76: 47.

    • Search Google Scholar
    • Export Citation
  • 26.

    Ciosi M, Masiga DK, Turner CMR, 2014. Laboratory colonisation and genetic bottlenecks in the tsetse fly Glossina pallidipes. PLoS Negl Trop Dis 8: e2697.

    • Search Google Scholar
    • Export Citation
  • 27.

    Rousset F, 2008. GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8: 103106.

  • 28.

    Hauser S, Wakeland K, Leberg P, 2018. Inconsistent use of multiple comparison corrections in studies of population genetic structure: are some type I errors more tolerable than others? 19: 144148.

    • Search Google Scholar
    • Export Citation
  • 29.

    Guo SW, Thompson EA, 1992. Performing the exact test of Hardy-Weinberg proportion for for multiple alleles. Biometrical J 48: 361372.

  • 30.

    Benjamini Y, Hochberg Y, 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57: 289300.

    • Search Google Scholar
    • Export Citation
  • 31.

    Sethuraman A, Wulf GK, Gonzalez NM, Grenier CE, Kansagra KS, Mey KK, Nunez SB, Bryce Z, 2019. Continued misuse of multiple testing correction methods in population genetics‐a wake‐up call? 19: 2326.

    • Search Google Scholar
    • Export Citation
  • 32.

    Schneider S, Excoffier L, Laval G, Schneider S, 2005. Arlequin: an integrated software package for population genetics data analysis. Evol Bioinform Online 1: 4750.

    • Search Google Scholar
    • Export Citation
  • 33.

    Weir BS, Cockerham CC, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 13581370.

  • 34.

    Goudet J, Raymond M, De Meeüs T, Rousset F, 1996. Testing differentiation in diploid populations. Genetics 144: 19331940.

  • 35.

    Peakall R, Smouse PE, 2012. GenALEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28: 25372539.

    • Search Google Scholar
    • Export Citation
  • 36.

    Wright S, 1950. The genetical structure of populations. The Genetical Structure of Populations. Chicago, IL: University of Chicago Galh Lecture at University College, 323354.

    • Search Google Scholar
    • Export Citation
  • 37.

    Pritcharda KJ, Wen X, Falushb D, 2010. Structure software version 2.3. Statistics 10: 139.

  • 38.

    Pritchard J, Stephens M, 2000. Association mapping in structured populations. Am J Hum Genet 67: 170181.

  • 39.

    R Core Team, 2008. R: A Language and Environment for Statistical Computing. Available at: https://www.r-project.org/. Accessed December 27, 2020.

  • 40.

    Jombart T, 2008. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24: 14031405.

  • 41.

    Jombart T, Devillard S, Balloux F, 2010. Discriminant analysis of principal components: a new method for the analysis of geneticallystructured populations 11: 94.

    • Search Google Scholar
    • Export Citation
  • 42.

    Kalinowski S, 2008. User ’ s manual for ML-relate input files null alleles. Mol Ecol Notes 6: 576579.

  • 43.

    Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A, 2004. GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95: 536539.

    • Search Google Scholar
    • Export Citation
  • 44.

    Okeyo WA 2018. Genetic differentiation of Glossina pallidipes tsetse flies in southern Kenya. Am J Trop Med Hyg 99: 945953.

  • 45.

    Nomura T, 2008. Estimation of effective number of breeders from molecular coancestry of single cohort sample. Evol Appl 1: 462474.

  • 46.

    Piry S, Luikart G, 1999. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Heredit 90: 502503.

    • Search Google Scholar
    • Export Citation
  • 47.

    Ouma JO, Marquez JG, Krafsur ES, 2005. Macrogeographic population structure of the tsetse fly, Glossina pallidipes (Diptera: Glossinidae). Bull Entomol Res 95: 437447.

    • Search Google Scholar
    • Export Citation
  • 48.

    Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR, 2014. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne ) from genetic data. Mol Ecol Resour 14: 209214.

    • Search Google Scholar
    • Export Citation
  • 49.

    Brown JE, Komatsu KJ, Abila PP, Robinson AS, Okedi LMA, Dyer N, Donnelly MJ, Slotman MA, Caccone A, 2008. Polymorphic microsatellite markers for the tsetse fly Glossina fuscipes fuscipes (Diptera: Glossinidae), a vector of human African trypanosomiasis. Mol Ecol Resour 8: 15061508.

    • Search Google Scholar
    • Export Citation
  • 50.

    Abila PP, Slotman MA, Parmakelis A, Dion KB, Robinson AS, Muwanika VB, Enyaru JCK, Lokedi LM, Aksoy S, Caccone A, 2008. High levels of genetic differentiation between Ugandan Glossina fuscipes fuscipes populations separated by Lake Kyoga. PLoS Negl Trop Dis 2: e242.

    • Search Google Scholar
    • Export Citation
  • 51.

    Luna C, Bonizzoni M, Cheng Q, Robinson AS, Aksoy S, Zheng L, 2001. Microsatellite polymorphism in tsetse flies (Diptera: Glossinidae). J Med Entomol 38: 376381.

    • Search Google Scholar
    • Export Citation
  • 52.

    Ouma J, Krafsur E, 2010. The influence of temporal and seasonal changes on genetic diversity and population structure of the tsetse fly, Glossina pallidipes in Kenya. East Afr Agric For J 77: 5968.

    • Search Google Scholar
    • Export Citation
  • 53.

    Kirk H, Freeland JR, 2011. Applications and implications of neutral versus non-neutral markers in Molecular Ecology. Int J Mol Sci 12: 39673988.

    • Search Google Scholar
    • Export Citation
  • 54.

    Hyseni C, Beadell JS, Ocampo ZG, Ouma JO, Okedi LM, Gaunt W, Caccone A, 2011. The G. m. morsitans (Diptera: Glossinidae) genome as a source of microsatellite markers for other tsetse fly (Glossina) species. Mol Ecol Resour 11: 111.

    • Search Google Scholar
    • Export Citation
  • 55.

    Echodu R, Beadell JS, Okedi LM, Hyseni C, Aksoy S, Caccone A, 2011. Temporal stability of Glossina fuscipes fuscipes populations in Uganda. Parasit Vectors 4: 19.

    • Search Google Scholar
    • Export Citation
  • 56.

    Echodu R, Sistrom M, Hyseni C, Enyaru J, Okedi L, Aksoy S, Caccone A, 2013. Genetically distinct Glossina fuscipes fuscipes populations in the Lake Kyoga region of Uganda and its relevance for human African trypanosomiasis. Biomed Res Int 2013: 614721.

    • Search Google Scholar
    • Export Citation
  • 57.

    Meyer A, Holt HR, Selby R, Guitian J, 2016. Past and ongoing tsetse and animal trypanosomiasis control operations in five African countries: a systematic review. PLoS Negl Trop Dis 10: e0005247.

    • Search Google Scholar
    • Export Citation
  • 58.

    Berrang Ford L, 2007. Civil conflict and sleeping sickness in Africa in general and Uganda in particular. Confl Health 1: 6.

  • 59.

    Mélachio TTT, Njiokou F, Ravel S, Simo G, Solano P, De Meeûs T, 2015. Effect of sampling methods, effective population size and migration rate estimation in Glossina palpalis palpalis from Cameroon. Infect Genet Evol 33: 150157.

    • Search Google Scholar
    • Export Citation
  • 60.

    Ravel S, de Meeus T, Dujardin JP, Zézé DG, Gooding RH, Dusfour I, Sané B, Cuny G, Solano P, 2007. The tsetse fly Glossina palpalis palpalis is composed of several genetically differentiated small populations in the sleeping sickness focus of Bonon, Côte d’Ivoire. Infect Genet Evol 7: 116125.

    • Search Google Scholar
    • Export Citation
  • 61.

    Krafsur ES, Marquez JG, Ouma JO, 2008. Structure of some east African Glossina fuscipes fuscipes populations. Med Vet Entomol 22: 222227.

  • 62.

    Ouma J, Beadell JS, Hyseni C, Okedi LM, Krafsur ES, Aksoy S, Caccone A, 2011. Genetic diversity and population structure of Glossina pallidipes in Uganda and western Kenya. Parasit Vectors 4: 122.

    • Search Google Scholar
    • Export Citation
  • 63.

    Beadell JS, Hyseni C, Abila PP, Azabo R, Enyaru JCK, Ouma JO, Mohammed YO, Okedi LM, Aksoy S, Caccone A, 2010. Phylogeography and population structure of Glossina fuscipes fuscipes in Uganda: implications for control of tsetse. PLoS Negl Trop Dis 4: e636.

    • Search Google Scholar
    • Export Citation
  • 64.

    Avise JC, 2004. Molecular Markers, Natural History and Evolution 2nd ed. Sunderland, MA: Sinauer Associates, Inc.

  • 65.

    Jensen JL, Bohonak AJ, Kelley ST, 2005. Isolation by distance, web service. BMC Genet 6: 13.

  • 66.

    Bateta R 2020. Phylogeography and population structure of the tsetse fly Glossina pallidipes in Kenya and the serengeti ecosystem. PLoS Negl Trop Dis 14: e0007855.

    • Search Google Scholar
    • Export Citation
  • 67.

    Ouma JO, Marquez JG, Krafsur ES, 2006. Microgeographical breeding structure of the tsetse fly, Glossina pallidipes in south-western Kenya. Med Vet Entomol 20: 138149.

    • Search Google Scholar
    • Export Citation
  • 68.

    Hyseni C, Kato AB, Okedi LM, Masembe C, Ouma JO, 2012. The population structure of Glossina fuscipes fuscipes in the Lake Victoria basin in Uganda: implications for vector control. Parasit Vectors 5: 222.

    • Search Google Scholar
    • Export Citation
  • 69.

    Okeyo WA 2017. Temporal genetic differentiation in Glossina pallidipes tsetse fly populations in Kenya. Parasit Vectors 10: 471.

  • 70.

    Kaba D, Ravel S, Solano P, Allou K, Bosson-vanga H, Gardes L, Goran EKN, Schofield CJ, Kon M, 2012. Phenetic and genetic structure of tsetse fly populations (Glossina palpalis palpalis) in southern Ivory Coast. Parasit Vectors 5: 153.

    • Search Google Scholar
    • Export Citation
  • 71.

    Bouyer J, Balenghien T, Ravel S, Vial L, Sidibé I, Thévenon S, Solano P, De Meeûs T, 2009. Population sizes and dispersal pattern of tsetse flies: rolling on the river? Mol Ecol 18: 27872797.

    • Search Google Scholar
    • Export Citation
  • 72.

    Vreysen MJB, Saleh KM, Ali MY, Abdulla AM, Zhu ZR, Juma KG, Dyck VA, Msangi AR, Mkonyi PA, Feldmann FU, 2000. Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique. J Econ Entomol 93: 123135.

    • Search Google Scholar
    • Export Citation

 

 

 

 

Population Structure and Migration Patterns of the Tsetse Fly Glossina fuscipes in Congo-Brazzaville

View More View Less
  • 1 Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, Kenya;
  • 2 Kenya Forestry Research Institute, Nairobi, Kenya;
  • 3 Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya;
  • 4 Marien Ngouabi University, Brazzaville, Congo;
  • 5 African Technical Research Centre, Vector Health International, Arusha, Tanzania;
  • 6 School of Biological Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya;
  • 7 Laboratoire de Parasitologie, Centre de Recherche Veterinaire et Zootechniques, Brazzaville, Congo

ABSTRACT

Tsetse flies of the palpalis group, particularly Glossina fuscipes, are the main vectors of human African trypanosomiasis or sleeping sickness in Congo-Brazzaville. They transmit the deadly human parasite, Trypanosoma brucei gambiense and other trypanosomes that cause animal trypanosomiasis. Knowledge on diversity, population structure, population size, and gene flow is a prerequisite for designing effective tsetse control strategies. There is limited published information on these parameters including migration patterns of G. fuscipes in Congo-Brazzaville. We genotyped 288 samples of G. fuscipes from Bomassa (BMSA), Bouemba (BEMB), and Talangai (TLG) locations at 10 microsatellite loci and determined levels of genetic diversity, differentiation, structuring, and gene flow among populations. We observed high genetic diversity in all three localities. Mean expected heterozygosity was 0.77 ± 0.04, and mean allelic richness was 11.2 ± 1.35. Deficiency of heterozygosity was observed in all populations with positive and significant FIS values (0.077–0.149). Structure analysis revealed three clusters with genetic admixtures, evidence of closely related but potentially different taxa within G. fuscipes. Genetic differentiation indices were low but significant (FST = 0.049, P < 0.05), indicating ongoing gene flow countered with a stronger force of drift. We recorded significant migration from all the three populations, suggesting exchange of genetic information between and among locations. Ne estimates revealed high and infinite population sizes in BEMB and TLG. These critical factors should be considered when planning area-wide tsetse control interventions in the country to prevent resurgence of tsetse from relict populations and/or reinvasion of cleared habitats.

    • Supplemental Materials (DOCX 668.35 KB)
    • Supplemental Materials (DOCX 113.87 KB)
    • Supplementary Materials
    • Supplementary Materials
    • Supplementary Materials
    • Supplementary Materials
    • Supplementary Materials
    • Supplemental Materials (DOCX 1.41 MB)
    • Supplementary Materials
    • Supplementary Materials

Author Notes

Address correspondence to Abraham Mayoke, Pan African University Institute for Basic Sciences, Technology and Innovation (PAUSTI), P.O. Box 62000, Nairobi 00200, Kenya. E-mail: abraham.mayoke@students.jkuat.ac.ke

Financial support: PCR reagents and microsatellites markers used for this work were partially sponsored by the Pan African University of Sciences Technology and Innovation (PAUSTI) and partially self-sponsored by the first author.

Authors’ addresses: Abraham Mayoke, Department of Molecular Biology and Biotechnology, Pan African University, Institute Of Basic Sciences Technology, and Innovation (PAUSTI), Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya, E-mail: demichbra@gmail.com. Johnson O. Ouma, Vector Health International, Africa Technical Research Centre, Arusha, Tanzania, E-mail: joouma@gmail.com. Paul O. Mireji, Sylvance O. Okoth, and Rosemary Bateta, Biotechnology Research Institute, Kenya Agricultural and Livestock Organization, Muguga, Kenya, E-mails: mireji.paul@gmail.com, sokotho@gmail.com, and batetarw@gmail.com. Stephen F. Omondi, Kenya Forestry Research Institute, Nairobi, Kenya, E-mail: stephenf.omondi@gmail.com. Shadrack M. Muya, School of Biological Sciences, Jomo Kenyatta University of Agriculture and Technology (JKUAT) Kenya, Nairobi, Kenya, E-mail: smuya@jkuat.ac.ke. Andre Itoua, Laboratoire de parasitologie, Centre de Recherche Veterinaire et Zootechniques, Brazzaville, Congo, E-mail: andreitoua2007@yahoo.fr.

Save