• 1.

    Kanapathipillai R, Henao Restrepo AM, Fast P, Wood D, Dye C, Kieny MP, Moorthy V, 2014. Ebola vaccine--an urgent international priority. New Engl J Med 371: 22492251.

    • Search Google Scholar
    • Export Citation
  • 2.

    Garbutt M, Liebscher R, Wahl-Jensen V, Jones S, Möller P, Wagner R, Volchkov V, Klenk HD, Feldmann H, Ströher U, 2004. Properties of replication-competent vesicular stomatitis virus vectors expressing glycoproteins of filoviruses and arenaviruses. J Virol 78: 54585465.

    • Search Google Scholar
    • Export Citation
  • 3.

    Jones SM, Stroher U, Fernando L, Qiu X, Alimonti J, Melito P, Bray M, Klenk HD, Feldmann H, 2007. Assessment of a vesicular stomatitis virus-based vaccine by use of the mouse model of Ebola virus hemorrhagic fever. J Infect Dis 196 (Suppl 2): S404S412.

    • Search Google Scholar
    • Export Citation
  • 4.

    Jones SM 2005. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat Med 11: 786790.

  • 5.

    Geisbert TW, Feldmann H, 2011. Recombinant vesicular stomatitis virus-based vaccines against Ebola and Marburg virus infections. J Infect Dis 204 (Suppl 3): S1075S1081.

    • Search Google Scholar
    • Export Citation
  • 6.

    Geisbert TW 2008. Vesicular stomatitis virus-based Ebola vaccine is well-tolerated and protects immunocompromised nonhuman primates. PLoS Pathog 4: e1000225.

    • Search Google Scholar
    • Export Citation
  • 7.

    Geisbert TW 2008. Vesicular stomatitis virus-based vaccines protect nonhuman primates against aerosol challenge with Ebola and Marburg viruses. Vaccine 26: 68946900.

    • Search Google Scholar
    • Export Citation
  • 8.

    Regules JA 2017. A recombinant vesicular stomatitis virus Ebola vaccine. New Engl J Med 376: 330341.

  • 9.

    Heppner DG Jr. 2017. Safety and immunogenicity of the rVSVG-ZEBOV-GP Ebola virus vaccine candidate in healthy adults: a phase 1b randomised, multicentre, double-blind, placebo-controlled, dose-response study. Lancet Infect Dis 17: 854866.

    • Search Google Scholar
    • Export Citation
  • 10.

    El Sherif MS 2017. Assessing the safety and immunogenicity of recombinant vesicular stomatitis virus Ebola vaccine in healthy adults: a randomized clinical trial. Can Med Assoc J 189: E819E27.

    • Search Google Scholar
    • Export Citation
  • 11.

    Coller BG 2017. Clinical development of a recombinant Ebola vaccine in the midst of an unprecedented epidemic. Vaccine 35: 44654469.

  • 12.

    Henao-Restrepo AM 2017. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ca Suffit!). Lancet 389: 505518.

    • Search Google Scholar
    • Export Citation
  • 13.

    Agnandji ST 2016. Phase 1 trials of rVSV ebola vaccine in Africa and Europe. New Engl J Med 374: 16471660.

  • 14.

    Bergren NA, Miller MR, Monath TP, Kading RC, 2017. Assessment of the ability of V920 recombinant vesicular stomatitis-Zaire ebolavirus vaccine to replicate in relevant arthropod cell cultures and vector species. Hum Vaccin Immunother 14: 9941002.

    • Search Google Scholar
    • Export Citation
  • 15.

    Mead DG, Ramberg FB, Mare CJ, 2000. Laboratory vector competence of black flies (Diptera: Simuliidae) for the Indiana serotype of vesicular stomatitis virus. Ann New York Acad Sci 916: 437443.

    • Search Google Scholar
    • Export Citation
  • 16.

    Tesh RB, Chaniotis BN, Johnson KM, 1971. Vesicular stomatitis virus, Indiana serotype: multiplication in and transmission by experimentally infected phlebotomine sandflies (Lutzomyia trapidoi). Am J Epidemiol 93: 491495.

    • Search Google Scholar
    • Export Citation
  • 17.

    Tesh RB, Chaniotis BN, Johnson KM, 1972. Vesicular stomatitis virus (Indiana serotype): transovarial transmission by phlebotomine sandlies. Science 175: 14771479.

    • Search Google Scholar
    • Export Citation
  • 18.

    Webb P, Holbrook F, eds, 1989. Vesicular Stomatitis. Boca Raton, FL: CRC Press.

  • 19.

    Comer JA, Tesh RB, 1991. Phlebotomine sand flies as vectors of vesiculoviruses: a review. Parassitologia 33 (Suppl 33): 143150.

  • 20.

    Depaquit J, Grandadam M, Fouque F, Andry PE, Peyrefitte C, 2010. Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: a review. Euro Surveillance 15: 19507.

    • Search Google Scholar
    • Export Citation
  • 21.

    Tesh RB, Modi GB, 1983. Growth and transovarial transmission of Chandipura virus (Rhabdoviridae: Vesiculovirus) in Phlebotomus papatasi. Am J Trop Med Hyg 32: 621623.

    • Search Google Scholar
    • Export Citation
  • 22.

    Doerr R, Franz K, Taussig S, 1909. Das Pappatacifieber. Leipzig, Germany.

  • 23.

    Lawyer P, Killick-Kendrick M, Rowland T, Rowton E, Volf P, 2017. Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae). Parasite 24: 42.

    • Search Google Scholar
    • Export Citation
  • 24.

    Hanley JA, Lippman-Hand A, 1983. If nothing goes wrong, is everything all right? Interpreting zero numerators. J Am Med Assoc 249: 17431745.

    • Search Google Scholar
    • Export Citation
  • 25.

    Theiler M, Downs WG, 1973. The Arthropod-Borne Viruses of Vertebrates. New Haven, CT and London, United Kingdom: Yale University Press.

  • 26.

    Pruzinova K, Sadlova J, Seblova V, Homola M, Votypka J, Volf P, 2015. Comparison of bloodmeal digestion and the peritrophic matrix in four sand fly species differing in susceptibility to Leishmania donovani. PloS One 10: e0128203.

    • Search Google Scholar
    • Export Citation
  • 27.

    Turell MJ, Rossignol PA, Spielman A, Rossi CA, Bailey CL, 1984. Enhanced arboviral transmission by mosquitoes that concurrently ingested microfilariae. Science 225: 10391041.

    • Search Google Scholar
    • Export Citation
  • 28.

    Dostalova A, Volf P, 2012. Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors 5: 276.

  • 29.

    Weaver SC, Lorenz LH, Scott TW, 1992. Pathologic changes in the midgut of Culex tarsalis following infection with Western equine encephalomyelitis virus. Am J Trop Med Hyg 47: 691701.

    • Search Google Scholar
    • Export Citation
  • 30.

    Darchenkova NN, Dergacheva TI, Zherikhina II, 1992. The spread of Phlebotomus papatasi Scop., 1786 through the territory of Central Asia and southern Kazakhstan. Med Parazitol 4: 3033.

    • Search Google Scholar
    • Export Citation
  • 31.

    Hassan MM, Widaa SO, Osman OM, Numiary MS, Ibrahim MA, Abushama HM, 2012. Insecticide resistance in the sand fly, Phlebotomus papatasi from Khartoum state, Sudan. Parasit Vectors 5: 46.

    • Search Google Scholar
    • Export Citation

 

 

 

 

No Evidence of rVSV-Ebola Virus Vaccine Replication or Dissemination in the Sand Fly Phlebotomus papatasi

View More View Less
  • 1 United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland;
  • 2 Walter Reed Army Institute of Research, Silver Spring, Maryland;
  • 3 Walter Reed Biosystematics Unit, Smithsonian Museum Support Center, Suitland, Maryland;
  • 4 Department of Entomology, Smithsonian Institution National Museum of Natural History, Washington, District of Columbia

ABSTRACT

Following vaccination with the live attenuated, recombinant vesicular stomatitis virus Indiana serotype Ebola virus (rVSV-EBOV) vaccine, persons may exhibit a transient vaccine-associated viremia. To investigate the potential for Old World sand flies to transmit this vaccine following feeding on a viremic person, we fed laboratory-reared Phlebotomus papatasi an artificial blood meal containing 7.2 log10 plaque-forming units of rVSV-EBOV. Replication or dissemination was not detected in the body or legs of any P. papatasi collected at seven (n = 75) or 15 (n = 75) days post-feed. These results indicate a low potential for rVSV-EBOV to replicate and disseminate in P. papatasi, a species whose geographic distribution ranges from Morocco to southwest Asia and as far north as southern Europe.

Author Notes

Address correspondence to Andrew D. Haddow, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter St., Frederick, MD 21701. E-mail: andrew.d.haddow.ctr@mail.mil

Disclaimer: The views expressed in this article are those of the authors and do not represent the official policy or position of the U.S. Department of the Army, Department of Defense, or the U.S. government.

Financial support: This study was funded by the Defense Threat Reduction Agency (DTRA).

Authors’ addresses: Andrew D. Haddow, Department of Virology, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, E-mail: andrew.d.haddow.ctr@mail.mil. Tobin E. Rowland, Jorge O. Lopez, and Mark C. Carder, Department of Entomology, Walter Reed Army Institute of Research, Silver Spring, MD, E-mails: tobin.e.rowland.civ@mail.mil, jorge.o.lopez8.mil@mail.mil, and mark.c.carder.mil@mail.mil. Sarah L. Norris, Department of Biostatistics, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, E-mail: sarah.l.norris2.civ@mail.mil. Thomas R. Sprague, Department of Virology, US Army Medical Research and Materiel Command, Frederick, MD, E-mail: thomas.r.sprague7.ctr@mail.mil. Yvonne-Marie Linton, Department of Entomology, Walter Reed Biosystematics Unit, Suitland, MD, E-mail: linton.yvonne3@gmail.com. M. Louise M. Pitt, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, E-mail: margaret.l.pitt.civ@mail.mil.

Save