Measuring the Host-Seeking Ability of Aedes aegypti Destined for Field Release

Meng-Jia Lau Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia;

Search for other papers by Meng-Jia Lau in
Current site
Google Scholar
PubMed
Close
,
Nancy M. Endersby-Harshman Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia;

Search for other papers by Nancy M. Endersby-Harshman in
Current site
Google Scholar
PubMed
Close
,
Jason K. Axford Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia;

Search for other papers by Jason K. Axford in
Current site
Google Scholar
PubMed
Close
,
Scott A. Ritchie College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia;
Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia

Search for other papers by Scott A. Ritchie in
Current site
Google Scholar
PubMed
Close
,
Ary A. Hoffmann Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia;

Search for other papers by Ary A. Hoffmann in
Current site
Google Scholar
PubMed
Close
, and
Perran A. Ross Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia;

Search for other papers by Perran A. Ross in
Current site
Google Scholar
PubMed
Close
Restricted access

Host seeking is an essential process in mosquito reproduction. Field releases of modified mosquitoes for population replacement rely on successful host seeking by female mosquitoes, but host-seeking ability is rarely tested in a realistic context. We tested the host-seeking ability of female Aedes aegypti mosquitoes using a semi-field system. Females with different Wolbachia infection types (wMel-, wAlbB-infected, and uninfected) or from different origins (laboratory and field) were released at one end of a semi-field cage and recaptured as they landed on human experimenters 15 m away. Mosquitoes from each population were then identified with molecular tools or through minimal dusting with fluorescent powder. Wolbachia-infected and uninfected populations had similar average durations to landing and overall recapture proportions, as did laboratory and field-sourced Ae. aegypti. These results indicate that the host-seeking ability of mosquitoes is not negatively affected by Wolbachia infection or long-term laboratory maintenance. This method provides an approach to study the host-seeking ability of mosquitoes in a realistic setting, which will be useful when evaluating strains of mosquitoes that are planned for releases into the field to suppress arbovirus transmission.

    • Supplemental Materials (PDF 1892 KB)

Author Notes

Address correspondence to Meng-Jia Lau, Bio21 Institute and the School of BioSciences, The University of Melbourne, 30 Flemington Road, Parkville, VIC 3052, Australia. E-mail: mengjial2@student.unimelb.edu.au

Disclosure: The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Financial support: A. A. H. was supported by the National Health and Medical Research Council (1132412, 1118640, www.nhmrc.gov.au) and the Wellcome Trust (108508, wellcome.ac.uk).

Authors’ addresses: Meng-Jia Lau, Nancy M. Endersby-Harshman, Jason K. Axford, Ary A. Hoffmann, and Perran A. Ross, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia, E-mails: mengjial2@student.unimelb.edu.au, nancye@student.unimelb.edu.au, jkaxford@unimelb.edu.au, ary@unimelb.edu.au, and perran.ross@unimelb.edu.au. Scott A. Ritchie, School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Cairns, Australia, Queensland Health, Tropical Population Health Network, Cairns, Australia, and World Mosquito Program, Institute of Vector Borne Disease, Monash University, Clayton, Australia, E-mail: scott.ritchie@jcu.edu.au.

  • 1.

    Gould EA, Higgs S, 2009. Impact of climate change and other factors on emerging arbovirus diseases. Trans R Soc Trop Med Hyg 103: 109121.

  • 2.

    Reiter P, 2001. Climate change and mosquito-borne disease. Environ Health Perspect 109: 141161.

  • 3.

    Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, 2013. The global distribution and burden of dengue. Nature 496: 504507.

  • 4.

    Gubler DJ, 2002. The global emergence/resurgence of arboviral diseases as public health problems. Med Res Arch 33: 330342.

  • 5.

    Benedict MQ, Robinson AS, 2003. The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol 19: 349355.

  • 6.

    Mains JW, Brelsfoard CL, Rose RI, Dobson SL, 2016. Female adult Aedes albopictus suppression by Wolbachia-infected male mosquitoes. Sci Rep 6: 33846.

  • 7.

    Harris AF, McKemey AR, Nimmo D, Curtis Z, Black I, Morgan SA, Oviedo MN, Lacroix R, Naish N, Morrison NI, 2012. Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat Biotechnol 30: 828830.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Walker T et al. 2011. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476: 450453.

  • 9.

    Ant TH, Herd CS, Geoghegan V, Hoffmann AA, Sinkins SP, 2018. The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathog 14: e1006815.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Dobson SL, Fox CW, Jiggins FM, 2002. The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems. Proc R Soc Lond B Biol Sci 269: 437445.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I, McGraw EA, O’Neill SL, 2009. Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 5: e1000368.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, 2009. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell 139: 12681278.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hoffmann AA, Montgomery B, Popovici J, Iturbe-Ormaetxe I, Johnson P, Muzzi F, Greenfield M, Durkan M, Leong Y, Dong Y, 2011. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476: 454457.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    O’Neill SL, Ryan PA, Turley AP, Wilson G, Retzki K, Iturbe-Ormaetxe I, Dong Y, Kenny N, Paton CJ, Ritchie SA, 2018. Scaled deployment of Wolbachia to protect the community from dengue and other Aedes transmitted arboviruses. Gates Open Res 2: 36.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Ritchie SA, 2018. Wolbachia and the near cessation of dengue outbreaks in northern Australia despite continued dengue importations via travellers. J Travel Med 25: tay084.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Benedict M, D’Abbs P, Dobson S, Gottlieb M, Harrington L, Higgs S, James A, James S, Knols B, Lavery J, 2008. Guidance for contained field trials of vector mosquitoes engineered to contain a gene drive system: recommendations of a scientific working group. Vector Borne Zoonotic Dis 8: 127166.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    de Azambuja Garcia G, Sylvestre G, Aguiar R, da Costa GB, Martins AJ, Lima JBP, Petersen MT, Lourenço-de-Oliveira R, Shadbolt MF, Rašić G, 2019. Matching the genetics of released and local Aedes aegypti populations is critical to assure Wolbachia invasion. PLoS Negl Trop Dis 13: e0007023.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M, Wang Y-F, O’Neill SL, 2009. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323: 141144.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Yeap HL et al. 2010. Dynamics of the “popcorn” Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics 187: 583595.

  • 20.

    Ross PA, Endersby NM, Hoffmann AA, 2016. Costs of three Wolbachia infections on the survival of Aedes aegypti larvae under starvation conditions. PLoS Negl Trop Dis 10: e0004320.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Ross PA, Ritchie SA, Axford JK, Hoffmann AA, 2019. Loss of cytoplasmic incompatibility in Wolbachia-infected Aedes aegypti under field conditions. PLoS Negl Trop Dis 13: e0007357.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Schmidt TL, Filipovic I, Hoffmann AA, Rasic G, 2018. Fine-scale landscape genomics helps explain the slow spatial spread of Wolbachia through the Aedes aegypti population in Cairns, Australia. Heredity (Edinb) 120: 386395.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hancock PA, White VL, Callahan AG, Godfray CH, Hoffmann AA, Ritchie SA, 2016. Density‐dependent population dynamics in Aedes aegypti slow the spread of wMel Wolbachia. J Appl Ecol 53: 785793.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hu L, Tang M, Wu Z, Xi Z, Yu J, 2019. The threshold infection level for Wolbachia invasion in random environments. J Differ Equ 266: 43774393.

  • 25.

    Chambers EW, Hapairai L, Peel BA, Bossin H, Dobson SL, 2011. Male mating competitiveness of a Wolbachia-introgressed Aedes polynesiensis strain under semi-field conditions. PLoS Negl Trop Dis 5: e1271.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Reisen W, 2003. Lessons from the past: an overview of studies by the University of Maryland and the University of California, Berkeley. Dordrecht, The Netherlands: Springer. Ecological Aspects for Application of Genetically Modified Mosquitoes 2: 2532.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hoffmann AA, Ross PA, 2018. Rates and patterns of laboratory adaptation in (mostly) insects. J Econ Entomol 111: 501509.

  • 28.

    Maclean H, Kristensen T, Sørensen J, Overgaard J, 2018. Laboratory maintenance does not alter ecological and physiological patterns among species: a Drosophila case study. J Econ Entomol 31: 530542.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Grossman MK, Uc-Puc V, Rodriguez J, Cutler DJ, Morran LT, Manrique-Saide P, Vazquez-Prokopec GM, 2018. Restoration of pyrethroid susceptibility in a highly resistant Aedes aegypti population. Biol Lett 14: 20180022.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Kristensen TN, Hoffmann AA, Overgaard J, Sorensen JG, Hallas R, Loeschcke V, 2008. Costs and benefits of cold acclimation in field-released Drosophila. Proc Natl Acad Sci USA 105: 216221.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Hoffmann AA, 2009. Drosophila and selection in nature: from laboratory fitness components to field assessments. van der Werf J, Graser H-U, Frankham R, Gondro C, eds. Adaptation and Fitness in Animal Populations: Evolutionary and Breeding Perspectives on Genetic Resource Management. Dordrecht, The Netherlands: Springer Netherlands, 169182.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Calisi RM, Bentley GE, 2009. Lab and field experiments: are they the same animal? Horm Behav 56: 110.

  • 33.

    Aldersley A, Pongsiri A, Bunmee K, Kijchalao U, Chittham W, Fansiri T, Pathawong N, Qureshi A, Harrington LC, Ponlawat A, 2019. Too “sexy” for the field? Paired measures of laboratory and semi-field performance highlight variability in the apparent mating fitness of Aedes aegypti transgenic strains. Parasit Vectors 12: 357.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    de Valdez MRW, Nimmo D, Betz J, Gong H-F, James AA, Alphey L, Black WC, 2011. Genetic elimination of dengue vector mosquitoes. Proc Natl Acad Sci USA 108: 47724775.

  • 35.

    Facchinelli L, Valerio L, Ramsey JM, Gould F, Walsh RK, Bond G, Robert MA, Lloyd AL, James AA, Alphey L, 2013. Field cage studies and progressive evaluation of genetically-engineered mosquitoes. PLoS Negl Trop Dis 7: e2001.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Dekker T, Geier M, Cardé RT, 2005. Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours. J Exp Biol 208: 29632972.

  • 37.

    Cardé R, 2015. Multi-cue integration: how female mosquitoes locate a human host. Curr Biol 25: R793R795.

  • 38.

    van Breugel F, Riffell J, Fairhall A, Dickinson MH, 2015. Mosquitoes use vision to associate odor plumes with thermal targets. Curr Biol 25: 21232129.

  • 39.

    Ritchie SA, Johnson PH, Freeman AJ, Odell RG, Graham N, Dejong PA, Standfield GW, Sale RW, O’Neill SL, 2011. A secure semi-field system for the study of Aedes aegypti. PLoS Negl Trop Dis 5: e988.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Nazni WA et al. 2019. Establishment of Wolbachia strain wAlbB in Malaysian populations of Aedes aegypti for dengue control. Curr Biol.

    • PubMed
    • Export Citation
  • 41.

    Clark GG, Bernier UR, Allan SA, Kline DL, Golden FV, 2011. Changes in host-seeking behavior of Puerto Rican Aedes aegypti after colonization. J Med Entomol 48: 533537.

  • 42.

    Ross PA, Axford JK, Richardson KM, Endersby-Harshman NM, Hoffmann AA, 2017. Maintaining Aedes aegypti mosquitoes infected with Wolbachia. J Vis Exp 126: e56124.

  • 43.

    Xi ZY, Khoo CCH, Dobson SL, 2005. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310: 326328.

  • 44.

    Hoffmann AA, Iturbe-Ormaetxe I, Callahan AG, Phillips BL, Billington K, Axford JK, Montgomery B, Turley AP, O’Neill SL, 2014. Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations. PLoS Negl Trop Dis 8: e3115.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Axford JK, Ross PA, Yeap HL, Callahan AG, Hoffmann AA, 2016. Fitness of wAlbB Wolbachia infection in Aedes aegypti: parameter estimates in an outcrossed background and potential for population invasion. Am J Trop Med Hyg 94: 507516.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Ross PA, Wiwatanaratanabutr I, Axford JK, White VL, Endersby-Harshman NM, Hoffmann AA, 2017. Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress. PLoS Pathog 13: e1006006.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Dittmer J, Alafndi A, Gabrieli P, 2019. Fat body–specific vitellogenin expression regulates host-seeking behaviour in the mosquito Aedes albopictus. PLoS Biol 17: e3000238.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Attardo GM, Hansen IA, Raikhel AS, 2005. Nutritional regulation of vitellogenesis in mosquitoes: implications for anautogeny. Insect Biochem Mol Biol 35: 661675.

  • 49.

    Yeap HL, Endersby NM, Johnson PH, Ritchie SA, Hoffmann AA, 2013. Body size and wing shape measurements as quality indicators of Aedes aegypti mosquitoes destined for field release. Am J Trop Med Hyg 89: 7892.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Nasci RS, 1986. The size of emerging and host-seeking Aedes aegypti and the relation of size to blood-feeding success in the field. J Am Mosq Control Assoc 2: 6162.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Briegel H, 1990. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J Insect Physiol 36: 165172.

  • 52.

    Anderson LE, 1954. Hoyer’s solution as a rapid permanent mounting medium for bryophytes. Bryologist 57: 242244.

  • 53.

    Lee SF, White VL, Weeks AR, Hoffmann AA, Endersby NM, 2012. High-throughput PCR assays to monitor Wolbachia infection in the dengue mosquito (Aedes aegypti) and Drosophila simulans. Appl Environ Microbiol 78: 47404743.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Joubert DA, Walker T, Carrington LB, De Bruyne JT, Kien DHT, Hoang NLT, Chau NVV, Iturbe-Ormaetxe I, Simmons CP, O’Neill SL, 2016. Establishment of a Wolbachia superinfection in Aedes aegypti mosquitoes as a potential approach for future resistance management. PLoS Pathog 12: e1005434.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Zhou W, Rousset F, O’Neill S, 1998. Phylogeny and PCR–based classification of Wolbachia strains using wsp gene sequences. Proc R Soc Lond B Biol Sci 265: 509515.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Verhulst NO, Loonen JA, Takken W, 2013. Advances in methods for colour marking of mosquitoes. Parasit Vectors 6: 200.

  • 57.

    Dickens BL, Brant HL, 2014. Effects of marking methods and fluorescent dusts on Aedes aegypti survival. Parasit Vectors 7: 65.

  • 58.

    Hagler JR, Jackson CG, 2001. Methods for marking insects: current techniques and future prospects. Annu Rev Entomol 46: 511543.

  • 59.

    Hope RM, 2013. Rmisc: Ryan Miscellaneous. R Package Version 1.5. Available at: https://cran.r-project.org/web/packages/Rmisc/index.html.

  • 60.

    Wickham H, 2009. plyr: tools for splitting, applying and combining data. R Package Version 0.1 9: 651.

  • 61.

    Wickham H, 2016. ggplot2: Elegant Graphics for Data Analysis: New York, NY: Springer, 224.

  • 62.

    Zwiebel L, Takken W, 2004. Olfactory regulation of mosquito–host interactions. Insect Biochem Mol Biol 34: 645652.

  • 63.

    Takken W, 1991. The role of olfaction in host-seeking of mosquitoes: a review. Int J Trop Insect Sci 12: 287295.

  • 64.

    Bowen M, 1991. The sensory physiology of host-seeking behavior in mosquitoes. Annu Rev Entomol 36: 139158.

  • 65.

    Madakacherry O, Lees RS, Gilles JRL, 2014. Aedes albopictus (Skuse) males in laboratory and semi-field cages: release ratios and mating competitiveness. Acta Trop 132: S124S129.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Mancini MV, Spaccapelo R, Damiani C, Accoti A, Tallarita M, Petraglia E, Rossi P, Cappelli A, Capone A, Peruzzi G, 2016. Paratransgenesis to control malaria vectors: a semi-field pilot study. Parasit Vectors 9: 140.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Darbro JM, Johnson PH, Thomas MB, Ritchie SA, Kay BH, Ryan PA, 2012. Effects of Beauveria bassiana on survival, blood-feeding success, and fecundity of Aedes aegypti in laboratory and semi-field conditions. Am J Trop Med Hyg 86: 656664.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Yeap HL, Axford JK, Popovici J, Endersby NM, Iturbe-Ormaetxe I, Ritchie SA, Hoffmann AA, 2014. Assessing quality of life-shortening Wolbachia-infected Aedes aegypti mosquitoes in the field based on capture rates and morphometric assessments. Parasit Vectors 7: 58.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Segoli M, Hoffmann AA, Lloyd J, Omodei GJ, Ritchie SA, 2014. The effect of virus-blocking Wolbachia on male competitiveness of the dengue vector mosquito, Aedes aegypti. Plos Negl Trop Dis 8: e3294.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    de Lima Santos ND, da Silva Paixão K, Napoleão TH, Trindade PB, Pinto MR, Coelho LC, Eiras ÁE, Navarro DM, Paiva PM, 2014. Evaluation of Moringa oleifera seed lectin in traps for the capture of Aedes aegypti eggs and adults under semi-field conditions. Parasitol Res 113: 18371842.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Johnson BJ, Ritchie SA, 2016. The Siren’s song: exploitation of female flight tones to passively capture male Aedes aegypti (Diptera: Culicidae). J Med Entomol 53: 245248.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Turley A, Smallegange R, Takken W, Zalucki M, O’neill S, McGraw E, 2014. Wolbachia infection does not alter attraction of the mosquito Aedes (Stegomyia) aegypti to human odours. Med Vet Entomol 28: 457460.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    McMeniman CJ, Corfas RA, Matthews BJ, Ritchie SA, Vosshall LB, 2014. Multimodal integration of carbon dioxide and other sensory cues drives mosquito attraction to humans. Cell 156: 10601071.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Ross PA, Endersby‐Harshman NM, Hoffmann AA, 2019. A comprehensive assessment of inbreeding and laboratory adaptation in Aedes aegypti mosquitoes. Evol Appl 12: 572586.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Ross PA, Lau M-J, Hoffmann AA, 2019. Does membrane feeding compromise the quality of Aedes aegypti mosquitoes? PLoS One 14: e0224268.

    • PubMed
    • Export Citation
  • 76.

    Hartberg W, 1971. Observations on the mating behaviour of Aedes aegypti in nature. Bull World Health Organ 45: 847850.

  • 77.

    Stone CM, Tuten HC, Dobson SL, 2013. Determinants of male Aedes aegypti and Aedes polynesiensis (Diptera: Culicidae) response to sound: efficacy and considerations for use of sound traps in the field. J Med Entomol 50: 723730.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Cator LJ, Arthur BJ, Ponlawat A, Harrington LC, 2011. Behavioral observations and sound recordings of free-flight mating swarms of Ae. aegypti (Diptera: Culicidae) in Thailand. J Med Entomol 48: 941946.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 557 371 15
Full Text Views 787 18 6
PDF Downloads 193 18 4
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save