Mougabure-Cueto G, Picollo MI, 2015. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop 149: 70–85.
Boothroyd C, Wijnen H, Naef F, Saez L, Young LW, 2007. Integration of light and temperature in the regulation of circadian gene expression in Drosophila. PLoS Genet 3: e54.
Xu K, Zheng X, Sehgal A, 2008. Regulation of feeding and metabolism by neuronal and peripheral clocks in Drosophila. Cell Metab 8: 289–300.
Levine JD, Funes P, Dowse HB, Hall JC, 2002. Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298: 2010–2012.
Hardin PE, 2011. Molecular genetic analysis of circadian timekeeping in Drosophila. Adv Genet 74: 142–158.
Ampleford Davey EJ, Davey KG, 1989. Egg laying in the insect Rhodnius prolixus is timed in a circadian fashion. J Insect Physiol 35: 183–187.
Barrozo RB, Schilman PE, Minoli SA, Lazzari CR, 2004. Daily rhythms in disease-vector insects. Biol Rhythm Res 35: 79–92.
Lazzari CR, 1991. Circadian rhythm of egg hatching in Triatoma infestans (Hemiptera: Reduviidae). J Med Entomol 28: 740–741.
Lazzari CR, 1992. Circadian organization of locomotion activity in the haematophagous bug Triatoma infestans. J Insect Physiol 38: 895–903.
Minoli SA, Lazzari CR, 2003. Chronobiological basis of thermopreference in the haematophagous bug Triatoma infestans. J Insect Physiol 49: 927–932.
Lorenzo Figueiras AN, Kenigsten A, Lazzari CR, 1994. Aggregation in the haematophagous bug Triatoma infestans: chemical signals and temporal pattern. J Insect Physiol 40: 311–316.
Stroppa MM, Gimenez I, Garcia BA, 2018. Clock gene period in the Chagas disease vector Triatoma infestans (Hemiptera: Reduviidae). Am J Trop Med Hyg 98: 468–474.
Hughes ME, Hogenesch JB, Kornacker K, 2010. JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J Biol Rhythm 25: 372–380.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729.
Steel CGH, Vafopoulou X, 2006. Circadian orchestration of developmental hormones in the insect, Rhodnius prolixus. Comp Biochem Physiol A Mol Integr Physiol 144: 351–364.
Helfrich-Förster C, 2004. The circadian clock in the brain: a structural and functional comparison between mammals and insects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190: 601–613.
Vafopoulou X, Terry KL, Steel CG, 2010. The circadian timing system in the brain of the fifth larval instar of Rhodnius prolixus (Hemiptera). J Comp Neurol 518: 1264–1282.
Vafopoulou X, Steel CG, 2014. Synergistic induction of the clock protein PERIOD by insulin-like peptide and prothoracicotropic hormone in Rhodnius prolixus (Hemiptera): implications for convergence of hormone signaling pathways. Front Physiol 5: 1–12.
Yang YY, Liu Y, Teng HJ, Sauman I, Sehnal F, Lee HJ, 2010. Circadian control of permethrin-resistance in the mosquito Aedes aegypti. J Insect Physiol 56: 1219–1223.
Varela GM, Stroppa MM, García BA, 2019. Daily variations in the expression of genes related to insecticide resistance in the Chagas disease vector Triatoma infestans (Hemiptera: Reduviidae). Am J Trop Med Hyg 100: 1482–1485.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 10 | 10 | 4 |
Full Text Views | 492 | 88 | 0 |
PDF Downloads | 89 | 21 | 0 |
To contribute to a better understanding of the molecular basis of the circadian biological rhythms in Chagas disease vectors, in this work we identified functional domains in the sequences of the clock protein TIMELESS (TIM) in Rhodnius prolixus and analyzed the expression of the timeless (tim) gene at the mRNA level in Triatoma infestans. The tim gene expression in nervous tissue of adult T. infestans revealed clear oscillations in the abundance of the transcript in both sexes in the group maintained under photoperiod with a daily canonical rhythm, showing a significant increase in expression at sunset. As expected, in the group maintained in constant light, no daily increase was detected in the tim transcript level.
Authors’ addresses: María M. Stroppa and Beatriz A. García, Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina, E-mails: mercedesstroppa@hotmail.com and bgarcia@biomed.uncor.edu.
Mougabure-Cueto G, Picollo MI, 2015. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop 149: 70–85.
Boothroyd C, Wijnen H, Naef F, Saez L, Young LW, 2007. Integration of light and temperature in the regulation of circadian gene expression in Drosophila. PLoS Genet 3: e54.
Xu K, Zheng X, Sehgal A, 2008. Regulation of feeding and metabolism by neuronal and peripheral clocks in Drosophila. Cell Metab 8: 289–300.
Levine JD, Funes P, Dowse HB, Hall JC, 2002. Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298: 2010–2012.
Hardin PE, 2011. Molecular genetic analysis of circadian timekeeping in Drosophila. Adv Genet 74: 142–158.
Ampleford Davey EJ, Davey KG, 1989. Egg laying in the insect Rhodnius prolixus is timed in a circadian fashion. J Insect Physiol 35: 183–187.
Barrozo RB, Schilman PE, Minoli SA, Lazzari CR, 2004. Daily rhythms in disease-vector insects. Biol Rhythm Res 35: 79–92.
Lazzari CR, 1991. Circadian rhythm of egg hatching in Triatoma infestans (Hemiptera: Reduviidae). J Med Entomol 28: 740–741.
Lazzari CR, 1992. Circadian organization of locomotion activity in the haematophagous bug Triatoma infestans. J Insect Physiol 38: 895–903.
Minoli SA, Lazzari CR, 2003. Chronobiological basis of thermopreference in the haematophagous bug Triatoma infestans. J Insect Physiol 49: 927–932.
Lorenzo Figueiras AN, Kenigsten A, Lazzari CR, 1994. Aggregation in the haematophagous bug Triatoma infestans: chemical signals and temporal pattern. J Insect Physiol 40: 311–316.
Stroppa MM, Gimenez I, Garcia BA, 2018. Clock gene period in the Chagas disease vector Triatoma infestans (Hemiptera: Reduviidae). Am J Trop Med Hyg 98: 468–474.
Hughes ME, Hogenesch JB, Kornacker K, 2010. JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J Biol Rhythm 25: 372–380.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729.
Steel CGH, Vafopoulou X, 2006. Circadian orchestration of developmental hormones in the insect, Rhodnius prolixus. Comp Biochem Physiol A Mol Integr Physiol 144: 351–364.
Helfrich-Förster C, 2004. The circadian clock in the brain: a structural and functional comparison between mammals and insects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190: 601–613.
Vafopoulou X, Terry KL, Steel CG, 2010. The circadian timing system in the brain of the fifth larval instar of Rhodnius prolixus (Hemiptera). J Comp Neurol 518: 1264–1282.
Vafopoulou X, Steel CG, 2014. Synergistic induction of the clock protein PERIOD by insulin-like peptide and prothoracicotropic hormone in Rhodnius prolixus (Hemiptera): implications for convergence of hormone signaling pathways. Front Physiol 5: 1–12.
Yang YY, Liu Y, Teng HJ, Sauman I, Sehnal F, Lee HJ, 2010. Circadian control of permethrin-resistance in the mosquito Aedes aegypti. J Insect Physiol 56: 1219–1223.
Varela GM, Stroppa MM, García BA, 2019. Daily variations in the expression of genes related to insecticide resistance in the Chagas disease vector Triatoma infestans (Hemiptera: Reduviidae). Am J Trop Med Hyg 100: 1482–1485.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 10 | 10 | 4 |
Full Text Views | 492 | 88 | 0 |
PDF Downloads | 89 | 21 | 0 |