Clock Gene Timeless in the Chagas Disease Vector Triatoma infestans (Hemiptera: Reduviidae)

María M. Stroppa Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina

Search for other papers by María M. Stroppa in
Current site
Google Scholar
PubMed
Close
and
Beatriz A. García Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina

Search for other papers by Beatriz A. García in
Current site
Google Scholar
PubMed
Close
Restricted access

To contribute to a better understanding of the molecular basis of the circadian biological rhythms in Chagas disease vectors, in this work we identified functional domains in the sequences of the clock protein TIMELESS (TIM) in Rhodnius prolixus and analyzed the expression of the timeless (tim) gene at the mRNA level in Triatoma infestans. The tim gene expression in nervous tissue of adult T. infestans revealed clear oscillations in the abundance of the transcript in both sexes in the group maintained under photoperiod with a daily canonical rhythm, showing a significant increase in expression at sunset. As expected, in the group maintained in constant light, no daily increase was detected in the tim transcript level.

Author Notes

Address correspondence to María M. Stroppa, Instituto de Investigaciones en Ciencias de la Salud, Cátedra de Bioquímica y Biología Molecular (CONICET-UNC), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Pabellón Argentina, 2do Piso, Ciudad Universitaria, Córdoba 5000, Argentina. E-mail: mercedesstroppa@hotmail.com

Authors’ addresses: María M. Stroppa and Beatriz A. García, Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina, E-mails: mercedesstroppa@hotmail.com and bgarcia@biomed.uncor.edu.

  • 1.

    Mougabure-Cueto G, Picollo MI, 2015. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop 149: 7085.

    • Search Google Scholar
    • Export Citation
  • 2.

    Boothroyd C, Wijnen H, Naef F, Saez L, Young LW, 2007. Integration of light and temperature in the regulation of circadian gene expression in Drosophila. PLoS Genet 3: e54.

    • Search Google Scholar
    • Export Citation
  • 3.

    Xu K, Zheng X, Sehgal A, 2008. Regulation of feeding and metabolism by neuronal and peripheral clocks in Drosophila. Cell Metab 8: 289300.

  • 4.

    Levine JD, Funes P, Dowse HB, Hall JC, 2002. Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298: 20102012.

    • Search Google Scholar
    • Export Citation
  • 5.

    Hardin PE, 2011. Molecular genetic analysis of circadian timekeeping in Drosophila. Adv Genet 74: 142158.

  • 6.

    Ampleford Davey EJ, Davey KG, 1989. Egg laying in the insect Rhodnius prolixus is timed in a circadian fashion. J Insect Physiol 35: 183187.

    • Search Google Scholar
    • Export Citation
  • 7.

    Barrozo RB, Schilman PE, Minoli SA, Lazzari CR, 2004. Daily rhythms in disease-vector insects. Biol Rhythm Res 35: 7992.

  • 8.

    Lazzari CR, 1991. Circadian rhythm of egg hatching in Triatoma infestans (Hemiptera: Reduviidae). J Med Entomol 28: 740741.

  • 9.

    Lazzari CR, 1992. Circadian organization of locomotion activity in the haematophagous bug Triatoma infestans. J Insect Physiol 38: 895903.

    • Search Google Scholar
    • Export Citation
  • 10.

    Minoli SA, Lazzari CR, 2003. Chronobiological basis of thermopreference in the haematophagous bug Triatoma infestans. J Insect Physiol 49: 927932.

    • Search Google Scholar
    • Export Citation
  • 11.

    Lorenzo Figueiras AN, Kenigsten A, Lazzari CR, 1994. Aggregation in the haematophagous bug Triatoma infestans: chemical signals and temporal pattern. J Insect Physiol 40: 311316.

    • Search Google Scholar
    • Export Citation
  • 12.

    Stroppa MM, Gimenez I, Garcia BA, 2018. Clock gene period in the Chagas disease vector Triatoma infestans (Hemiptera: Reduviidae). Am J Trop Med Hyg 98: 468474.

    • Search Google Scholar
    • Export Citation
  • 13.

    Hughes ME, Hogenesch JB, Kornacker K, 2010. JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J Biol Rhythm 25: 372380.

    • Search Google Scholar
    • Export Citation
  • 14.

    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 27252729.

    • Search Google Scholar
    • Export Citation
  • 15.

    Steel CGH, Vafopoulou X, 2006. Circadian orchestration of developmental hormones in the insect, Rhodnius prolixus. Comp Biochem Physiol A Mol Integr Physiol 144: 351364.

    • Search Google Scholar
    • Export Citation
  • 16.

    Helfrich-Förster C, 2004. The circadian clock in the brain: a structural and functional comparison between mammals and insects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190: 601613.

    • Search Google Scholar
    • Export Citation
  • 17.

    Vafopoulou X, Terry KL, Steel CG, 2010. The circadian timing system in the brain of the fifth larval instar of Rhodnius prolixus (Hemiptera). J Comp Neurol 518: 12641282.

    • Search Google Scholar
    • Export Citation
  • 18.

    Vafopoulou X, Steel CG, 2014. Synergistic induction of the clock protein PERIOD by insulin-like peptide and prothoracicotropic hormone in Rhodnius prolixus (Hemiptera): implications for convergence of hormone signaling pathways. Front Physiol 5: 112.

    • Search Google Scholar
    • Export Citation
  • 19.

    Yang YY, Liu Y, Teng HJ, Sauman I, Sehnal F, Lee HJ, 2010. Circadian control of permethrin-resistance in the mosquito Aedes aegypti. J Insect Physiol 56: 12191223.

    • Search Google Scholar
    • Export Citation
  • 20.

    Varela GM, Stroppa MM, García BA, 2019. Daily variations in the expression of genes related to insecticide resistance in the Chagas disease vector Triatoma infestans (Hemiptera: Reduviidae). Am J Trop Med Hyg 100: 14821485.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 10 10 4
Full Text Views 492 88 0
PDF Downloads 89 21 0
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save