In Vivo Imaging of Bioluminescent Mycobacterium ulcerans: A Tool to Refine the Murine Buruli Ulcer Tail Model

Till F. Omansen Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia;
Department of Internal Medicine/Infectious Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;

Search for other papers by Till F. Omansen in
Current site
Google Scholar
PubMed
Close
,
Renee A. Marcsisin Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia;

Search for other papers by Renee A. Marcsisin in
Current site
Google Scholar
PubMed
Close
,
Brendon Y. Chua Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia;

Search for other papers by Brendon Y. Chua in
Current site
Google Scholar
PubMed
Close
,
Weiguang Zeng Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia;

Search for other papers by Weiguang Zeng in
Current site
Google Scholar
PubMed
Close
,
David C. Jackson Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia;

Search for other papers by David C. Jackson in
Current site
Google Scholar
PubMed
Close
,
Jessica L. Porter Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia;

Search for other papers by Jessica L. Porter in
Current site
Google Scholar
PubMed
Close
,
Ymkje Stienstra Department of Internal Medicine/Infectious Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;

Search for other papers by Ymkje Stienstra in
Current site
Google Scholar
PubMed
Close
,
Tjip S. van der Werf Department of Internal Medicine/Infectious Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

Search for other papers by Tjip S. van der Werf in
Current site
Google Scholar
PubMed
Close
, and
Timothy P. Stinear Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia;

Search for other papers by Timothy P. Stinear in
Current site
Google Scholar
PubMed
Close
Restricted access

Buruli ulcer (BU) is a neglected tropical disease caused by infection with Mycobacterium ulcerans. Unclear transmission, no available vaccine, and suboptimal treatment regimens hamper the control of this disease. Carefully designed preclinical research is needed to address these shortcomings. In vivo imaging (IVIS®, Perkin Elmer, Waltham, MA) of infection is an emerging tool that permits monitoring of disease progression and reduces the need to using large numbers of mice at different time-points during the experiment, as individual mice can be imaged at multiple time-points. We aimed to further describe the use of in vivo imaging (IVIS) in BU. We studied the detection of M. ulcerans in experimentally infected BALB/c mouse tails and the subsequent histopathology and immune response in this pilot study. IVIS-monitoring was performed weekly in ten infected BALB/c mice to measure light emitted as a proxy for bacterial load. Nine of 10 (90%) BALB/c mice infected subcutaneously with 3.3 × 105 M. ulcerans JKD8049 (containing pMV306 hsp16+luxG13) exhibited light emission from the site of infection, indicating M. ulcerans growth in vivo, whereas only five of 10 (50%) animals developed clinical signs of the disease. Specific antibody titers were detected within 2 weeks of the infection. Interferon (IFN)-γ and interleukin (IL)-10 were elevated in animals with pathology. Histopathology revealed clusters of acid-fast bacilli in the subcutaneous tissue, with macrophage infiltration and granuloma formation resembling human BU. Our study successfully showed the utility of M. ulcerans IVIS monitoring and lays a foundation for further research.

Author Notes

Address correspondence to Timothy P. Stinear, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville 3010, Australia. E-mail: tstinear@unimelb.edu.au

Authors’ addresses: Till F. Omansen and Ymkje Stienstra, Department of Internal Medicine/Infectious Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, E-mails: t.f.omansen@umcg.nl and y.stienstra@umcg.nl. Renee A. Marcsisin, Brendon Y. Chua, Weiguang Zeng, David C. Jackson, Jessica L. Porter, and Timothy P. Stinear, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia, E-mails: reneemarcsisin@gmail.com, bychua@unimelb.edu.au, weiguang@unimelb.edu.au, davidcj@unimelb.edu.au, jlporter@unimelb.edu.au, and tstinear@unimelb.edu.au. Tjip S. van der Werf, Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, E-mail: t.s.van.der.werf@umcg.nl.

  • 1.

    van der Werf TS et al. 2005. Mycobacterium ulcerans disease. Bull World Health Organ 83: 785791.

  • 2.

    WHO, 2019. Buruli Ulcer Fact Sheet. Available at: https://www.who.int/news-room/fact-sheets/detail/buruli-ulcer-(mycobacterium-ulcerans-infection). Accessed May 21, 2019.

    • Search Google Scholar
    • Export Citation
  • 3.

    de Zeeuw J et al. 2014. Persisting social participation restrictions among former Buruli ulcer patients in Ghana and Benin. PLoS Negl Trop Dis 8: e3303.

    • Search Google Scholar
    • Export Citation
  • 4.

    George KM, Chatterjee D, Gunawardana G, Welty D, Hayman J, Lee R, Small PL, 1999. Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence. Science 283: 854857.

    • Search Google Scholar
    • Export Citation
  • 5.

    George KM, Pascopella L, Welty DM, Small PL, 2000. A Mycobacterium ulcerans toxin, mycolactone, causes apoptosis in Guinea pig ulcers and tissue culture cells. Infect Immun 68: 877883.

    • Search Google Scholar
    • Export Citation
  • 6.

    Hall BS, Hill K, McKenna M, Ogbechi J, High S, Willis AE, Simmonds RE, 2014. The pathogenic mechanism of the Mycobacterium ulcerans virulence factor, mycolactone, depends on blockade of protein translocation into the ER. PLoS Pathog 10: e1004061.

    • Search Google Scholar
    • Export Citation
  • 7.

    Demangel C, High S, 2018. Sec61 blockade by mycolactone: a central mechanism in Buruli ulcer disease. Biol Cell 110: 237248.

  • 8.

    Stinear TP et al. 2004. Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans. Proc Natl Acad Sci USA 101: 13451349.

    • Search Google Scholar
    • Export Citation
  • 9.

    Meyers WM, Shelly WM, Connor DH, 1974. Heat treatment of Mycobacterium ulcerans infections without surgical excision. Am J Trop Med Hyg 23: 924929.

    • Search Google Scholar
    • Export Citation
  • 10.

    Wallace JR et al. 2017. Mycobacterium ulcerans low infectious dose and mechanical transmission support insect bites and puncturing injuries in the spread of Buruli ulcer. PLoS Negl Trop Dis 11: e0005553.

    • Search Google Scholar
    • Export Citation
  • 11.

    Johnson PD, Azuolas J, Lavender CJ, Wishart E, Stinear TP, Hayman JA, Brown L, Jenkin GA, Fyfe JA, 2007. Mycobacterium ulcerans in mosquitoes captured during outbreak of Buruli ulcer, southeastern Australia. Emerg Infect Dis 13: 16531660.

    • Search Google Scholar
    • Export Citation
  • 12.

    Lavender CJ, Fyfe JA, Azuolas J, Brown K, Evans RN, Ray LR, Johnson PD, 2011. Risk of Buruli ulcer and detection of Mycobacterium ulcerans in mosquitoes in southeastern Australia. PLoS Negl Trop Dis 5: e1305.

    • Search Google Scholar
    • Export Citation
  • 13.

    Etuaful S et al. 2005. Efficacy of the combination rifampin-streptomycin in preventing growth of Mycobacterium ulcerans in early lesions of Buruli ulcer in humans. Antimicrob Agents Chemother 49: 31823186.

    • Search Google Scholar
    • Export Citation
  • 14.

    Nienhuis WA et al. 2010. Antimicrobial treatment for early, limited Mycobacterium ulcerans infection: a randomised controlled trial. Lancet 375: 664672.

    • Search Google Scholar
    • Export Citation
  • 15.

    Kibadi K et al. 2010. Response to treatment in a prospective cohort of patients with large ulcerated lesions suspected to be Buruli ulcer (Mycobacterium ulcerans disease). PLoS Negl Trop Dis 4: e736.

    • Search Google Scholar
    • Export Citation
  • 16.

    Wadagni AC, Barogui YT, Johnson RC, Sopoh GE, Affolabi D, van der Werf TS, de Zeeuw J, Kleinnijenhuis J, Stienstra Y, 2018. Delayed versus standard assessment for excision surgery in patients with Buruli ulcer in Benin: a randomised controlled trial. Lancet Infect Dis 18: 650656.

    • Search Google Scholar
    • Export Citation
  • 17.

    Einarsdottir T, Huygen K, 2011. Buruli ulcer. Hum Vaccin 7: 11981203.

  • 18.

    Dega H, Robert J, Bonnafous P, Jarlier V, Grosset J, 2000. Activities of several antimicrobials against Mycobacterium ulcerans infection in mice. Antimicrob Agents Chemother 44: 23672372.

    • Search Google Scholar
    • Export Citation
  • 19.

    Bentoucha A, Robert J, Dega H, Lounis N, Jarlier V, Grosset J, 2001. Activities of new macrolides and fluoroquinolones against Mycobacterium ulcerans infection in mice. Antimicrob Agents Chemother 45: 31093112.

    • Search Google Scholar
    • Export Citation
  • 20.

    Dega H, Bentoucha A, Robert J, Jarlier V, Grosset J, 2002. Bactericidal activity of rifampin-amikacin against Mycobacterium ulcerans in mice. Antimicrob Agents Chemother 46: 31933196.

    • Search Google Scholar
    • Export Citation
  • 21.

    Marsollier L, Robert R, Aubry J, Saint André J-P, Kouakou H, Legras P, Manceau AL, Mahaza C, Carbonnelle B, 2002. Aquatic insects as a vector for Mycobacterium ulcerans. Appl Environ Microbiol 68: 46234628.

    • Search Google Scholar
    • Export Citation
  • 22.

    Shepard CC, 1960. The experimental disease that follows the injection of human leprosy bacilli into foot-pads of mice. J Exp Med 112: 445454.

    • Search Google Scholar
    • Export Citation
  • 23.

    Tanghe A, Dangy J-P, Pluschke G, Huygen K, 2008. Improved protective efficacy of a species-specific DNA vaccine encoding mycolyl-transferase Ag85A from Mycobacterium ulcerans by homologous protein boosting. PLoS Negl Trop Dis 2: e199.

    • Search Google Scholar
    • Export Citation
  • 24.

    Tanghe A, Adnet P-Y, Gartner T, Huygen K, 2007. A booster vaccination with Mycobacterium bovis BCG does not increase the protective effect of the vaccine against experimental Mycobacterium ulcerans infection in mice. Infect Immun 75: 26422644.

    • Search Google Scholar
    • Export Citation
  • 25.

    Dhople AM, Namba K, 2003. Activities of sitafloxacin (DU-6859a), either singly or in combination with rifampin, against Mycobacterium ulcerans infection in mice. J Chemother 15: 4752.

    • Search Google Scholar
    • Export Citation
  • 26.

    Converse PJ et al. 2018. Shorter-course treatment for Mycobacterium ulcerans disease with high-dose rifamycins and clofazimine in a mouse model of Buruli ulcer. PLoS Negl Trop Dis 12: e0006728.

    • Search Google Scholar
    • Export Citation
  • 27.

    Converse PJ, Xing Y, Kim KH, Tyagi S, Li S-Y, Almeida DV, Nuermberger EL, Grosset JH, Kishi Y, 2014. Accelerated detection of mycolactone production and response to antibiotic treatment in a mouse model of Mycobacterium ulcerans disease. PLoS Negl Trop Dis 8: e2618.

    • Search Google Scholar
    • Export Citation
  • 28.

    Sarfo FS, Converse PJ, Almeida DV, Zhang J, Robinson C, Wansbrough-Jones M, Grosset JH, 2013. Microbiological, histological, immunological, and toxin response to antibiotic treatment in the mouse model of Mycobacterium ulcerans disease. PLoS Negl Trop Dis 7: e2101.

    • Search Google Scholar
    • Export Citation
  • 29.

    Converse PJ, Almeida DV, Nuermberger EL, Grosset JH, 2011. BCG-mediated protection against Mycobacterium ulcerans infection in the mouse. PLoS Negl Trop Dis 5: e985.

    • Search Google Scholar
    • Export Citation
  • 30.

    Zhang T, Li SY, Converse PJ, Almeida DV, Grosset JH, Nuermberger EL, 2011. Using bioluminescence to monitor treatment response in real time in mice with Mycobacterium ulcerans infection. Antimicrob Agents Chemother 55: 5661.

    • Search Google Scholar
    • Export Citation
  • 31.

    Zhang T, Bishai WR, Grosset JH, Nuermberger EL, 2010. Rapid assessment of antibacterial activity against Mycobacterium ulcerans by using recombinant luminescent strains. Antimicrob Agents Chemother 54: 28062813.

    • Search Google Scholar
    • Export Citation
  • 32.

    Almeida D, Converse PJ, Ahmad Z, Dooley KE, Nuermberger EL, Grosset JH, 2011. Activities of rifampin, rifapentine and clarithromycin alone and in combination against Mycobacterium ulcerans disease in mice. PLoS Negl Trop Dis 5: e933.

    • Search Google Scholar
    • Export Citation
  • 33.

    Almeida DV, Converse PJ, Li S-Y, Tyagi S, Nuermberger EL, Grosset JH, 2013. Bactericidal activity does not predict sterilizing activity: the case of rifapentine in the murine model of Mycobacterium ulcerans disease. PLoS Negl Trop Dis 7: e2085.

    • Search Google Scholar
    • Export Citation
  • 34.

    Converse PJ, Tyagi S, Xing Y, Li S-Y, Kishi Y, Adamson J, Nuermberger EL, Grosset JH, 2015. Efficacy of rifampin plus clofazimine in a murine model of Mycobacterium ulcerans disease. PLoS Negl Trop Dis 9: e0003823.

    • Search Google Scholar
    • Export Citation
  • 35.

    Zhang T, Li SY, Converse PJ, Grosset JH, Nuermberger EL, 2013. Rapid, serial, non-invasive assessment of drug efficacy in mice with autoluminescent Mycobacterium ulcerans infection. PLoS Negl Trop Dis 7: e2598.

    • Search Google Scholar
    • Export Citation
  • 36.

    Coutanceau E, Legras P, Marsollier L, Reysset G, Cole ST, Demangel C, 2006. Immunogenicity of Mycobacterium ulcerans Hsp65 and protective efficacy of a Mycobacterium leprae Hsp65-based DNA vaccine against Buruli ulcer. Microbes Infect 8: 20752081.

    • Search Google Scholar
    • Export Citation
  • 37.

    Yerramilli A et al. 2017. The location of Australian Buruli ulcer lesions-implications for unravelling disease transmission. PLoS Negl Trop Dis 11: e0005800.

    • Search Google Scholar
    • Export Citation
  • 38.

    Leach RH, Fenner F, 1954. Studies on Mycobacterium ulcerans and Mycobacterium balnei. Aust J Exp Biol Med Sci 32: 835852.

  • 39.

    Omansen TF, Porter JL, Johnson PDR, van der Werf TS, Stienstra Y, Stinear TP, 2015. In-vitro activity of avermectins against Mycobacterium ulcerans. PLoS Negl Trop Dis 9: e0003549.

    • Search Google Scholar
    • Export Citation
  • 40.

    Andreu N et al. 2010. Optimisation of bioluminescent reporters for use with mycobacteria. PLoS One 5: e10777.

  • 41.

    Andreu N, Zelmer A, Sampson SL, Ikeh M, Bancroft GJ, Schaible UE, Wiles S, Robertson BD, 2013. Rapid in vivo assessment of drug efficacy against Mycobacterium tuberculosis using an improved firefly luciferase. J Antimicrob Chemother 68: 21182127.

    • Search Google Scholar
    • Export Citation
  • 42.

    Hong H, Gates PJ, Staunton J, Stinear T, Cole ST, Leadlay PF, Spencer JB, 2003. Identification using LC-MSn of co-metabolites in the biosynthesis of the polyketide toxin mycolactone by a clinical isolate of Mycobacterium ulcerans. Chem Commun (Camb) 22: 28222823.

    • Search Google Scholar
    • Export Citation
  • 43.

    Gooding TM, Johnson PD, Campbell DE, Hayman JA, Hartland EL, Kemp AS, Robins-Browne RM, 2001. Immune response to infection with Mycobacterium ulcerans. Infect Immun 69: 17041707.

    • Search Google Scholar
    • Export Citation
  • 44.

    Pidot SJ et al. 2010. Serological evaluation of Mycobacterium ulcerans antigens identified by comparative genomics. PLoS Negl Trop Dis 4: e872.

  • 45.

    Mwanatambwe M, Fukunishi Y, Yajima M, Suzuki K, Asiedu K, Etuafel S, Yamada N, Asano G, 2000. Clinico-histopathological findings of Buruli ulcer. Nihon Hansenbyo Gakkai Zasshi 69: 93100.

    • Search Google Scholar
    • Export Citation
  • 46.

    Ruf M-T, Schütte D, Chauffour A, Jarlier V, Ji B, Pluschke G, 2012. Chemotherapy-associated changes of histopathological features of Mycobacterium ulcerans lesions in a Buruli ulcer mouse model. Antimicrob Agents Chemother 56: 687696.

    • Search Google Scholar
    • Export Citation
  • 47.

    Guarner J et al. 2003. Histopathologic features of Mycobacterium ulcerans infection. Emerg Infect Dis 9: 651656.

  • 48.

    Rondini S, Horsfield C, Mensah-Quainoo E, Junghanss T, Lucas S, Pluschke G, 2006. Contiguous spread of Mycobacterium ulcerans in Buruli ulcer lesions analysed by histopathology and real-time PCR quantification of mycobacterial DNA. J Pathol 208: 119128.

    • Search Google Scholar
    • Export Citation
  • 49.

    Coutanceau E, Decalf J, Martino A, Babon A, Winter N, Cole ST, Albert ML, Demangel C, 2007. Selective suppression of dendritic cell functions by Mycobacterium ulcerans toxin mycolactone. J Exp Med 204: 13951403.

    • Search Google Scholar
    • Export Citation
  • 50.

    Phillips R, Sarfo FS, Guenin-Macé L, Decalf J, Wansbrough-Jones M, Albert ML, Demangel C, 2009. Immunosuppressive signature of cutaneous Mycobacterium ulcerans infection in the peripheral blood of patients with Buruli ulcer disease. J Infect Dis 200: 16751684.

    • Search Google Scholar
    • Export Citation
  • 51.

    Boulkroun S, Guenin-Macé L, Thoulouze M-I, Monot M, Merckx A, Langsley G, Bismuth G, Di Bartolo V, Demangel C, 2010. Mycolactone suppresses T cell responsiveness by altering both early signaling and posttranslational events. J Immunol 184: 14361444.

    • Search Google Scholar
    • Export Citation
  • 52.

    Gooding TM, Johnson PDR, Smith M, Kemp AS, Robins-Browne RM, 2002. Cytokine profiles of patients infected with Mycobacterium ulcerans and unaffected household contacts. Infect Immun 70: 55625567.

    • Search Google Scholar
    • Export Citation
  • 53.

    Guenin-Macé L, Carrette F, Asperti-Boursin F, Le Bon A, Caleechurn L, Di Bartolo V, Fontanet A, Bismuth G, Demangel C, 2011. Mycolactone impairs T cell homing by suppressing microRNA control of L-selectin expression. Proc Natl Acad Sci USA 108: 1283312838.

    • Search Google Scholar
    • Export Citation
  • 54.

    Fraga AG, Martins TG, Torrado E, Huygen K, Portaels F, Silva MT, Castro AG, Pedrosa J, 2012. Cellular immunity confers transient protection in experimental Buruli ulcer following BCG or mycolactone-negative Mycobacterium ulcerans vaccination. PLoS One 7: e33406.

    • Search Google Scholar
    • Export Citation
  • 55.

    Sarfo FS, Phillips RO, Ampadu E, Sarpong F, Adentwe E, Wansbrough-Jones M, 2009. Dynamics of the cytokine response to Mycobacterium ulcerans during antibiotic treatment for M. ulcerans disease (Buruli ulcer) in humans. Clin Vaccine Immunol 16: 6165.

    • Search Google Scholar
    • Export Citation
  • 56.

    Bieri R, Bolz M, Ruf MT, Pluschke G, 2016. Interferon-γ is a crucial activator of early host immune defense against Mycobacterium ulcerans infection in mice. PLoS Negl Trop Dis 10: e0004450.

    • Search Google Scholar
    • Export Citation
  • 57.

    Schipper HS, Rutgers B, Huitema MG, Etuaful SN, Westenbrink BD, Limburg PC, Timens W, van der Werf TS, 2007. Systemic and local interferon-gamma production following Mycobacterium ulcerans infection. Clin Exp Immunol 150: 451459.

    • Search Google Scholar
    • Export Citation
  • 58.

    Diaz D, Döbeli H, Yeboah-Manu D, Mensah-Quainoo E, Friedlein A, Soder N, Rondini S, Bodmer T, Pluschke G, 2006. Use of the immunodominant 18-kiloDalton small heat shock protein as a serological marker for exposure to Mycobacterium ulcerans. Clin Vaccine Immunol 13: 13141321.

    • Search Google Scholar
    • Export Citation
  • 59.

    Silva-Gomes R, Marcq E, Trigo G, Gonçalves CM, Longatto-Filho A, Castro AG, Pedrosa J, Fraga AG, 2015. Spontaneous healing of Mycobacterium ulcerans lesions in the Guinea pig model. PLoS Negl Trop Dis 9: e0004265.

    • Search Google Scholar
    • Export Citation
  • 60.

    Nakanaga K et al. 2018. Naturally occurring a loss of a giant plasmid from Mycobacterium ulcerans subsp. shinshuense makes it non-pathogenic. Sci Rep 8: 8218.

    • Search Google Scholar
    • Export Citation
  • 61.

    Klis S, Kingma RA, Tuah W, van der Werf TS, Stienstra Y, 2016. Clinical outcomes of Ghanaian Buruli ulcer patients who defaulted from antimicrobial therapy. Trop Med Int Health 21: 11911196.

    • Search Google Scholar
    • Export Citation
  • 62.

    Simmonds RE, Lali FV, Smallie T, Small PLC, Foxwell BM, 2009. Mycolactone inhibits monocyte cytokine production by a posttranscriptional mechanism. J Immunol 182: 21942202.

    • Search Google Scholar
    • Export Citation
  • 63.

    Nienhuis WA et al. 2012. Paradoxical responses after start of antimicrobial treatment in Mycobacterium ulcerans infection. Clin Infect Dis 54: 519526.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 45 45 18
Full Text Views 726 187 1
PDF Downloads 210 44 0
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save