Host Competency of the Multimammate Rat Mastomys natalensis Demonstrated by Prolonged Spirochetemias with the African Relapsing Fever Spirochete Borrelia crocidurae

Kristin Boardman Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana;

Search for other papers by Kristin Boardman in
Current site
Google Scholar
PubMed
Close
,
Kyle Rosenke Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana;

Search for other papers by Kyle Rosenke in
Current site
Google Scholar
PubMed
Close
,
David Safronetz Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada;

Search for other papers by David Safronetz in
Current site
Google Scholar
PubMed
Close
,
Heinz Feldmann Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana;

Search for other papers by Heinz Feldmann in
Current site
Google Scholar
PubMed
Close
, and
Tom G. Schwan Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana

Search for other papers by Tom G. Schwan in
Current site
Google Scholar
PubMed
Close
Restricted access

African multimammate rats, Mastomys natalensis, are widely distributed in sub-Saharan Africa and live in close association with humans. In West Africa, numerous field studies have shown these animals may be naturally infected with the relapsing fever spirochete Borrelia crocidurae, the primary cause of tick-borne relapsing fever in this region of the continent. However, naturally infected individual rats have never been examined over time; therefore, the true host competency of these rats for this spirochete is unknown. Therefore, using animals from an established laboratory colony of M. natalensis, rats were experimentally infected with B. crocidurae and their blood examined to 28 days postinoculation. These animals were highly susceptible to infection and displayed prolonged and cyclic spirochetemias. Our results demonstrate these peridomestic rodents are likely competent hosts for infecting argasid tick vectors and play a primary role in the enzootic cycle for B. crocidurae in West Africa.

Author Notes

Address correspondence to Tom G. Schwan, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th St., Hamilton, MT 59840. E-mail: tschwan@nih.gov

Financial support: This work was funded by the International Centers for Excellence in Research (ICER) and the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health.

Authors’ addresses: Kristin Boardman, Cary Institute of Ecosystem Studies, Millbrook, NY, E-mail: kristinboardman94@yahoo.com. Kyle Rosenke, Heinz Feldmann, and Tom G. Schwan, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, E-mails: kyle.rosenke@nih.gov, feldmannh@niaid.nih.gov, and tschwan@nih.gov. David Safronetz, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada, E-mail: david.safronetz@canada.ca.

  • 1.

    Trape JF et al. 2013. The epidemiology and geographic distribution of relapsing fever borreliosis in West and North Africa, with a review of the Ornithodoros erraticus complex (Acari: Ixodida). PLoS One 11: e78473.

    • Search Google Scholar
    • Export Citation
  • 2.

    Leger A, 1917. Spirochète de las musaraigne (Crocidura stampflii Jentink). Bull Soc Path Exot 10: 280281.

  • 3.

    Boiron H, 1949. Considérations sur la fièvre récurrente a tiques au Sénégal. L’importance du rat comme réservoir de virus. Bull Soc Path Exot 42: 6270.

    • Search Google Scholar
    • Export Citation
  • 4.

    Mathis MM, Durieux C, 1934. Fréquence a Dakar de la spirochétose récurrente a tiques. Bull Acad Med 111: 37.

  • 5.

    Trape JF, Duplantier JM, Bouganali H, Godeluck B, Legros F, Cornet JP, Camicas JL, 1991. Tick-borne borreliosis in west Africa. Lancet 337: 473475.

  • 6.

    Godeluck B, Duplantier JM, Ba K, Trape JF, 1994. A longitudinal survey of Borrelia crocidurae prevalence in rodents and insectivores in Senegal. Am J Trop Med Hyg 50: 165168.

    • Search Google Scholar
    • Export Citation
  • 7.

    Diatta G, Trape JF, Legros F, Rogier C, Duplantier JM, 1994. A comparative study of three methods of detection of Borrelia crocidurae in wild rodents in Senegal. Trans R Soc Trop Med Hyg 88: 423424.

    • Search Google Scholar
    • Export Citation
  • 8.

    Trape JF, Godeluck B, Diatta G, Rogier C, Legros F, Albergel J, Pepin Y, Duplantier JM, 1996. The spread of tick-borne borreliosis in west Africa and its relationship to sub-saharan drought. Am J Trop Med Hyg 54: 289293.

    • Search Google Scholar
    • Export Citation
  • 9.

    Vial L, Diatta G, Tall A, Ba EH, Bouganali H, Durand P, Sokhna C, Rogier C, Renaud F, Trape JF, 2006. Incidence of tick-borne relapsing fever in west Africa: longitudinal study. Lancet 368: 3743.

    • Search Google Scholar
    • Export Citation
  • 10.

    Elbir H, FotsoFotso A, Diatta G, Trape JF, Arnathau C, Renaud F, Durand P, 2015. Ubiquitous bacteria Borrelia crocidurae in western African ticks Ornithodoros sonrai. Parasit Vectors 8: 477.

    • Search Google Scholar
    • Export Citation
  • 11.

    Schwan TG, Anderson JM, Lopez JE, Fischer RJ, Raffel SJ, McCoy BN, Safronetz D, Sogoba N, Maïga O, Traore SF, 2012. Endemic foci of the tick-borne relapsing fever spirochete Borrelia crocidurae in Mali, West Africa, and the potential for human infection. PLoS Negl Trop Dis 6: e1924.

    • Search Google Scholar
    • Export Citation
  • 12.

    Diatta G, Duplantier JM, Granjon L, Ba K, Chauvancy G, Ndiaye M, Trape JF, 2015. Borrelia infection in small mammals in West Africa and its relationship with tick occurrence inside burrows. Acta Trop 152: 131140.

    • Search Google Scholar
    • Export Citation
  • 13.

    Musser GG, Carleton MD, 2005. Superfamily Muroidea. Wilson DE, Reeder DM, eds. Mammal Species of the World. Baltimore, MD: The Johns Hopkins University Press, 8941531.

    • Search Google Scholar
    • Export Citation
  • 14.

    Barbour AG, 1984. Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57: 521525.

  • 15.

    Raffel SJ, Battisti JM, Fischer RJ, Schwan TG, 2014. Inactivation of genes for antigenic variation in the relapsing fever spirochete Borrelia hermsii reduces infectivity in mice and transmission by ticks. PLoS Pathog 10: e1004056.

    • Search Google Scholar
    • Export Citation
  • 16.

    Mooser H, 1958. Erythozyten-adhäsion und hämagglomeration durch rückfallfiefer-spirochäten. Z Tropenmed Parasitol 9: 93111.

  • 17.

    Burman N, Shamaei-Tousi A, Bergström S, 1998. The spirochete Borrelia crocidurae causes erythrocyte rosetting during relapsing fever. Infect Immun 66: 815819.

    • Search Google Scholar
    • Export Citation
  • 18.

    Shamaei-Tousi A, Martin P, Bergh A, Burman N, Brännstrom T, Bergström S, 1999. Erythrocyte-aggregating relapsing fever spirochete Borrelia crocidurae induces formation of miroemboli. J Infect Dis 180: 19291938.

    • Search Google Scholar
    • Export Citation
  • 19.

    Zumpt F, 1959. Is the multimammate rat a reservoir for Borrelia duttoni? Nature 184: 793794.

Past two years Past Year Past 30 Days
Abstract Views 18 18 5
Full Text Views 520 163 1
PDF Downloads 144 29 0
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save