Trape JF et al. 2013. The epidemiology and geographic distribution of relapsing fever borreliosis in West and North Africa, with a review of the Ornithodoros erraticus complex (Acari: Ixodida). PLoS One 11: e78473.
Leger A, 1917. Spirochète de las musaraigne (Crocidura stampflii Jentink). Bull Soc Path Exot 10: 280–281.
Boiron H, 1949. Considérations sur la fièvre récurrente a tiques au Sénégal. L’importance du rat comme réservoir de virus. Bull Soc Path Exot 42: 62–70.
Mathis MM, Durieux C, 1934. Fréquence a Dakar de la spirochétose récurrente a tiques. Bull Acad Med 111: 3–7.
Trape JF, Duplantier JM, Bouganali H, Godeluck B, Legros F, Cornet JP, Camicas JL, 1991. Tick-borne borreliosis in west Africa. Lancet 337: 473–475.
Godeluck B, Duplantier JM, Ba K, Trape JF, 1994. A longitudinal survey of Borrelia crocidurae prevalence in rodents and insectivores in Senegal. Am J Trop Med Hyg 50: 165–168.
Diatta G, Trape JF, Legros F, Rogier C, Duplantier JM, 1994. A comparative study of three methods of detection of Borrelia crocidurae in wild rodents in Senegal. Trans R Soc Trop Med Hyg 88: 423–424.
Trape JF, Godeluck B, Diatta G, Rogier C, Legros F, Albergel J, Pepin Y, Duplantier JM, 1996. The spread of tick-borne borreliosis in west Africa and its relationship to sub-saharan drought. Am J Trop Med Hyg 54: 289–293.
Vial L, Diatta G, Tall A, Ba EH, Bouganali H, Durand P, Sokhna C, Rogier C, Renaud F, Trape JF, 2006. Incidence of tick-borne relapsing fever in west Africa: longitudinal study. Lancet 368: 37–43.
Elbir H, FotsoFotso A, Diatta G, Trape JF, Arnathau C, Renaud F, Durand P, 2015. Ubiquitous bacteria Borrelia crocidurae in western African ticks Ornithodoros sonrai. Parasit Vectors 8: 477.
Schwan TG, Anderson JM, Lopez JE, Fischer RJ, Raffel SJ, McCoy BN, Safronetz D, Sogoba N, MaĂŻga O, Traore SF, 2012. Endemic foci of the tick-borne relapsing fever spirochete Borrelia crocidurae in Mali, West Africa, and the potential for human infection. PLoS Negl Trop Dis 6: e1924.
Diatta G, Duplantier JM, Granjon L, Ba K, Chauvancy G, Ndiaye M, Trape JF, 2015. Borrelia infection in small mammals in West Africa and its relationship with tick occurrence inside burrows. Acta Trop 152: 131–140.
Musser GG, Carleton MD, 2005. Superfamily Muroidea. Wilson DE, Reeder DM, eds. Mammal Species of the World. Baltimore, MD: The Johns Hopkins University Press, 894–1531.
Barbour AG, 1984. Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57: 521–525.
Raffel SJ, Battisti JM, Fischer RJ, Schwan TG, 2014. Inactivation of genes for antigenic variation in the relapsing fever spirochete Borrelia hermsii reduces infectivity in mice and transmission by ticks. PLoS Pathog 10: e1004056.
Mooser H, 1958. Erythozyten-adhäsion und hämagglomeration durch rückfallfiefer-spirochäten. Z Tropenmed Parasitol 9: 93–111.
Burman N, Shamaei-Tousi A, Bergström S, 1998. The spirochete Borrelia crocidurae causes erythrocyte rosetting during relapsing fever. Infect Immun 66: 815–819.
Shamaei-Tousi A, Martin P, Bergh A, Burman N, Brännstrom T, Bergström S, 1999. Erythrocyte-aggregating relapsing fever spirochete Borrelia crocidurae induces formation of miroemboli. J Infect Dis 180: 1929–1938.
Zumpt F, 1959. Is the multimammate rat a reservoir for Borrelia duttoni? Nature 184: 793–794.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 518 | 195 | 4 |
PDF Downloads | 143 | 43 | 4 |
African multimammate rats, Mastomys natalensis, are widely distributed in sub-Saharan Africa and live in close association with humans. In West Africa, numerous field studies have shown these animals may be naturally infected with the relapsing fever spirochete Borrelia crocidurae, the primary cause of tick-borne relapsing fever in this region of the continent. However, naturally infected individual rats have never been examined over time; therefore, the true host competency of these rats for this spirochete is unknown. Therefore, using animals from an established laboratory colony of M. natalensis, rats were experimentally infected with B. crocidurae and their blood examined to 28 days postinoculation. These animals were highly susceptible to infection and displayed prolonged and cyclic spirochetemias. Our results demonstrate these peridomestic rodents are likely competent hosts for infecting argasid tick vectors and play a primary role in the enzootic cycle for B. crocidurae in West Africa.
Financial support: This work was funded by the International Centers for Excellence in Research (ICER) and the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health.
Authors’ addresses: Kristin Boardman, Cary Institute of Ecosystem Studies, Millbrook, NY, E-mail: kristinboardman94@yahoo.com. Kyle Rosenke, Heinz Feldmann, and Tom G. Schwan, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, E-mails: kyle.rosenke@nih.gov, feldmannh@niaid.nih.gov, and tschwan@nih.gov. David Safronetz, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada, E-mail: david.safronetz@canada.ca.