Dondorp AM et al. 2009 Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361: 455–467.
Wwarn K, Group GS, 2019. Association of mutations in the Plasmodium falciparum Kelch13 gene (Pf3D7_1343700) with parasite clearance rates after artemisinin-based treatments-a WWARN individual patient data meta-analysis. BMC Med 17: 1.
World Health Organization, 2018. Status Report on Artemisinin Resistance and ACT Efficacy. Geneva, Switzerland: World Health Organization.
Lu F et al. 2017. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in Africa. N Engl J Med 376: 991–993.
Mwaiswelo R, Ngasala B, Jovel I, Xu W, Larsson E, Malmberg M, Gil JP, Premji Z, Mmbando BP, Mårtensson A, 2019. Prevalence of and risk factors associated with polymerase chain reaction-determined Plasmodium falciparum positivity on day 3 after initiation of artemether–lumefantrine treatment for uncomplicated malaria in Bagamoyo District, Tanzania. Am J Trop Med Hyg 100: 1179–1186.
Roth JM, Omweri G, de Jong MD, Osoti V, Mens PF, Sawa P, Makio N, Schallig HDFH, 2018. Molecular detection of residual parasitemia after pyronaridine–artesunate or artemether–lumefantrine treatment of uncomplicated Plasmodium falciparum malaria in Kenyan children. Am J Trop Med Hyg 99: 970–977.
Beshir KB et al. 2013. Residual Plasmodium falciparum parasitemia in Kenyan children after artemisinin-combination therapy is associated with increased transmission to mosquitoes and parasite recurrence. J Infect Dis 208: 2017–2024.
Hopkins H, Gonzalez IJ, Polley SD, Angutoko P, Ategeka J, Asiimwe C, Agaba B, Kyabayinze DJ, Sutherland CJ, Perkins MD, Bell D, 2013. Highly sensitive detection of malaria parasitemia in a malaria-endemic setting: performance of a new loop-mediated isothermal amplification kit in a remote clinic in Uganda. J Infect Dis 208: 645–652.
Pöschl B, Waneesorn J, Thekisoe O, Chutipongvivate S, Panagiotis K, 2010. Comparative diagnosis of malaria infections by microscopy, nested PCR, and LAMP in northern Thailand. Am J Trop Med Hyg 83: 56–60.
Aydin-Schmidt B, Xu W, González IJ, Polley SD, Bell D, Shakely D, Msellem MI, Björkman A, Mårtensson A, 2014. Loop mediated isothermal amplification (LAMP) accurately detects malaria DNA from filter paper blood samples of low density parasitaemias. PLoS One 9: e103905.
National Malaria Control Programme, Mainland Tanzania, 2018. Supplementary Malaria Midterm Strategic Plan (2018–2020); Malaria Control Series 43. Dar es Dalaam, Tanzania: Ministry of Health, Community Development, Gender, Elderly & Children, p. 73.
Foundation for innovative new diagnostics FIND, 2012. Manual of Standard Operating Procedures for Malaria LAMP. Available at: https://www.finddx.org/wp-content/uploads/2016/04/SOP-LAMP-Malaria-Aug2012.pdf. Accessed February 3, 2019.
Polley SD, Mori Y, Watson J, Perkins MD, González IJ, Notomi T, Chiodini PL, Sutherland CJ, 2010. Mitochondrial DNA targets increase sensitivity of malaria detection using loop-mediated isothermal amplification. J Clin Microbiol 48: 2866–2871.
Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T, 2000. Loop-Mediated Isothermal Amplification of DNA, Vol. 28. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC102748/pdf/gnd064.pdf. Accessed February 9, 2019.
Xu W, Morris U, Aydin-Schmidt B, Msellem MI, Shakely D, Petzold M, Björkman A, Mårtensson A, 2015. SYBR green real-time PCR-RFLP assay targeting the Plasmodium cytochrome B gene–a highly sensitive molecular tool for malaria parasite detection and species determination. PLoS One 10: e0120210.
Kamau E, Tolbert LS, Kortepeter L, Pratt M, Nyakoe N, Muringo L, Ogutu B, Waitumbi JN, Ockenhouse CF, 2011. Development of a highly sensitive genus-specific quantitative reverse transcriptase real-time PCR assay for detection and quantitation of Plasmodium by amplifying RNA and DNA of the 18S rRNA genes. J Clin Microbiol 49: 2946–2953.
Morris U et al. 2015. Field deployment of loop-mediated isothermal amplification for centralized mass-screening of asymptomatic malaria in Zanzibar: a pre-elimination setting. Malar J 14: 5–10.
Katrak S et al. 2017. Performance of loop-mediated isothermal amplification for the identification of submicroscopic Plasmodium falciparum infection in Uganda. Am J Trop Med Hyg 97: 1777–1781.
Paris DH, Imwong M, Faiz AM, Hasan M, Yunus E Bin, Silamut K, Lee SJ, Day NPJ, Dondorp AM, 2007. Loop-mediated isothermal PCR (LAMP) for the diagnosis of falciparum malaria. Am J Trop Med Hyg 77: 972–976.
Chang H-H et al. 2016. Persistence of Plasmodium falciparum parasitemia after artemisinin combination therapy: evidence from a randomized trial in Uganda. Sci Rep 6: 26330.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 703 | 577 | 228 |
Full Text Views | 458 | 9 | 0 |
PDF Downloads | 194 | 12 | 0 |
Microscopy-determined Plasmodium falciparum positivity rates exceeding 10% on day 3 after initiation of artemisinin-based combination therapy (ACT) is an important indicator of artemisinin resistance. However, microscopy does not detect low-density parasitemia, contrary to molecular tools such as loop-mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR). We compared microscopy, LAMP, and PCR for detection of P. falciparum on day 3 after ACT in 256 patients with uncomplicated malaria in Bagamoyo District, Tanzania. Day 3 positivity rates were 0%, 84.8%, and 84.4% for each method, respectively. The sensitivity and specificity of LAMP against PCR was 100% (95% CI, 96.1–100) and 77.4% (95% CI, 58.9–90.4) when quantitative PCR-determined parasite densities were ≥ two parasites/µL. Loop-mediated isothermal amplification had comparable diagnostic accuracy to PCR and could potentially represent a field-friendly tool for determining day 3 positivity rates. However, what day 3 P. falciparum positivity determined using molecular methods represents needs to be further elucidated.
Financial support: The Swedish International Development Agency [Bilateral Sida grant: Bil-Tz 16/9875007059] and the Swedish Research Council [Grant number: 2016-0577] provided financial assistance for this work.
Authors’ addresses: Lwidiko E. Mhamilawa and Billy Ngasala, Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania, E-mails: lwidiko.edward@kbh.uu.se and bngasala70@yahoo.co.uk. Berit Aydin-Schmidt and Ulrika Morris, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, E- mails: berit.schmidt@ki.se and ulrika.morris@ki.se. Bruno P. Mmbando, Tanga Centre, National Institute for Medical Research, Tanga, Tanzania, E-mail: b.mmbando@yahoo.com.
Dondorp AM et al. 2009 Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361: 455–467.
Wwarn K, Group GS, 2019. Association of mutations in the Plasmodium falciparum Kelch13 gene (Pf3D7_1343700) with parasite clearance rates after artemisinin-based treatments-a WWARN individual patient data meta-analysis. BMC Med 17: 1.
World Health Organization, 2018. Status Report on Artemisinin Resistance and ACT Efficacy. Geneva, Switzerland: World Health Organization.
Lu F et al. 2017. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in Africa. N Engl J Med 376: 991–993.
Mwaiswelo R, Ngasala B, Jovel I, Xu W, Larsson E, Malmberg M, Gil JP, Premji Z, Mmbando BP, Mårtensson A, 2019. Prevalence of and risk factors associated with polymerase chain reaction-determined Plasmodium falciparum positivity on day 3 after initiation of artemether–lumefantrine treatment for uncomplicated malaria in Bagamoyo District, Tanzania. Am J Trop Med Hyg 100: 1179–1186.
Roth JM, Omweri G, de Jong MD, Osoti V, Mens PF, Sawa P, Makio N, Schallig HDFH, 2018. Molecular detection of residual parasitemia after pyronaridine–artesunate or artemether–lumefantrine treatment of uncomplicated Plasmodium falciparum malaria in Kenyan children. Am J Trop Med Hyg 99: 970–977.
Beshir KB et al. 2013. Residual Plasmodium falciparum parasitemia in Kenyan children after artemisinin-combination therapy is associated with increased transmission to mosquitoes and parasite recurrence. J Infect Dis 208: 2017–2024.
Hopkins H, Gonzalez IJ, Polley SD, Angutoko P, Ategeka J, Asiimwe C, Agaba B, Kyabayinze DJ, Sutherland CJ, Perkins MD, Bell D, 2013. Highly sensitive detection of malaria parasitemia in a malaria-endemic setting: performance of a new loop-mediated isothermal amplification kit in a remote clinic in Uganda. J Infect Dis 208: 645–652.
Pöschl B, Waneesorn J, Thekisoe O, Chutipongvivate S, Panagiotis K, 2010. Comparative diagnosis of malaria infections by microscopy, nested PCR, and LAMP in northern Thailand. Am J Trop Med Hyg 83: 56–60.
Aydin-Schmidt B, Xu W, González IJ, Polley SD, Bell D, Shakely D, Msellem MI, Björkman A, Mårtensson A, 2014. Loop mediated isothermal amplification (LAMP) accurately detects malaria DNA from filter paper blood samples of low density parasitaemias. PLoS One 9: e103905.
National Malaria Control Programme, Mainland Tanzania, 2018. Supplementary Malaria Midterm Strategic Plan (2018–2020); Malaria Control Series 43. Dar es Dalaam, Tanzania: Ministry of Health, Community Development, Gender, Elderly & Children, p. 73.
Foundation for innovative new diagnostics FIND, 2012. Manual of Standard Operating Procedures for Malaria LAMP. Available at: https://www.finddx.org/wp-content/uploads/2016/04/SOP-LAMP-Malaria-Aug2012.pdf. Accessed February 3, 2019.
Polley SD, Mori Y, Watson J, Perkins MD, González IJ, Notomi T, Chiodini PL, Sutherland CJ, 2010. Mitochondrial DNA targets increase sensitivity of malaria detection using loop-mediated isothermal amplification. J Clin Microbiol 48: 2866–2871.
Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T, 2000. Loop-Mediated Isothermal Amplification of DNA, Vol. 28. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC102748/pdf/gnd064.pdf. Accessed February 9, 2019.
Xu W, Morris U, Aydin-Schmidt B, Msellem MI, Shakely D, Petzold M, Björkman A, Mårtensson A, 2015. SYBR green real-time PCR-RFLP assay targeting the Plasmodium cytochrome B gene–a highly sensitive molecular tool for malaria parasite detection and species determination. PLoS One 10: e0120210.
Kamau E, Tolbert LS, Kortepeter L, Pratt M, Nyakoe N, Muringo L, Ogutu B, Waitumbi JN, Ockenhouse CF, 2011. Development of a highly sensitive genus-specific quantitative reverse transcriptase real-time PCR assay for detection and quantitation of Plasmodium by amplifying RNA and DNA of the 18S rRNA genes. J Clin Microbiol 49: 2946–2953.
Morris U et al. 2015. Field deployment of loop-mediated isothermal amplification for centralized mass-screening of asymptomatic malaria in Zanzibar: a pre-elimination setting. Malar J 14: 5–10.
Katrak S et al. 2017. Performance of loop-mediated isothermal amplification for the identification of submicroscopic Plasmodium falciparum infection in Uganda. Am J Trop Med Hyg 97: 1777–1781.
Paris DH, Imwong M, Faiz AM, Hasan M, Yunus E Bin, Silamut K, Lee SJ, Day NPJ, Dondorp AM, 2007. Loop-mediated isothermal PCR (LAMP) for the diagnosis of falciparum malaria. Am J Trop Med Hyg 77: 972–976.
Chang H-H et al. 2016. Persistence of Plasmodium falciparum parasitemia after artemisinin combination therapy: evidence from a randomized trial in Uganda. Sci Rep 6: 26330.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 703 | 577 | 228 |
Full Text Views | 458 | 9 | 0 |
PDF Downloads | 194 | 12 | 0 |