• 1.

    World Health Organazation, 2017. Global leprosy update, 2016: accelerating reduction of disease burden. Wkly Epidemiol Rec 92: 501519.

    • Search Google Scholar
    • Export Citation
  • 2.

    World Health Organazation, 2015. Global leprosy update, 2015: time for action, accountability and inclusion. Wkly Epidemiol Rec 91: 405420.

    • Search Google Scholar
    • Export Citation
  • 3.

    Rodrigues LC, Lockwood D, 2011. Leprosy now: epidemiology, progress, challenges, and research gaps. Lancet Infect Dis 11: 464470.

  • 4.

    White C, Franco-Paredes C, 2015. Leprosy in the 21st century. Clin Microbiol Rev 28: 8094.

  • 5.

    Fava V, Orlova M, Cobat A, Alcais A, Mira M, Schurr E, 2012. Genetics of leprosy reactions: an overview. Mem Inst Oswaldo Cruz 107 (Suppl 1): 132142.

  • 6.

    Walker SL, Lockwood DN, 2008. Leprosy type 1 (reversal) reactions and their management. Lepr Rev 79: 372386.

  • 7.

    Piris A, Lobo AZ, Moschella SL, 2010. Global dermatopathology: hansen’s disease–current concepts and challenges. J Cutan Pathol 37 (Suppl 1): 125136.

    • Search Google Scholar
    • Export Citation
  • 8.

    Lyde CB, 1997. Pregnancy in patients with Hansen disease. Arch Dermatol 133: 623627.

  • 9.

    Sauer ME, Salomao H, Ramos GB, D’Espindula HR, Rodrigues RS, Macedo WC, Sindeaux RH, Mira MT, 2016. Genetics of leprosy: expected-and unexpected-developments and perspectives. Clin Dermatol 34: 96104.

    • Search Google Scholar
    • Export Citation
  • 10.

    Lockwood DN, Lambert SM, 2011. Human immunodeficiency virus and leprosy: an update. Dermatol Clin 29: 125128.

  • 11.

    Machado PR, Johnson WD, Glesby MJ, 2012. The role of human T cell lymphotrophic virus type 1, hepatitis B virus and hepatitis C virus coinfections in leprosy. Mem Inst Oswaldo Cruz 107 (Suppl 1): 4348.

    • Search Google Scholar
    • Export Citation
  • 12.

    Motta AC, Pereira KJ, Tarquinio DC, Vieira MB, Miyake K, Foss NT, 2012. Leprosy reactions: coinfections as a possible risk factor. Clinics 67: 11451148.

    • Search Google Scholar
    • Export Citation
  • 13.

    Oktaria S, Effendi EH, Indriatmi W, van Hees CL, Thio HB, Sjamsoe-Daili ES, 2016. Soil-transmitted helminth infections and leprosy: a cross-sectional study of the association between two major neglected tropical diseases in Indonesia. BMC Infect Dis 16: 258.

    • Search Google Scholar
    • Export Citation
  • 14.

    Diniz LM, Magalhaes EF, Pereira FE, Dietze R, Ribeiro-Rodrigues R, 2010. Presence of intestinal helminths decreases T helper type 1 responses in tuberculoid leprosy patients and may increase the risk for multi-bacillary leprosy. Clin Exp Immunol 161: 142150.

    • Search Google Scholar
    • Export Citation
  • 15.

    Hagge DA et al. 2017. Opening a can of worms: leprosy reactions and complicit soil-transmitted helminths. EBioMedicine 23: 119124.

  • 16.

    Colley DG, Secor WE, 2014. Immunology of human schistosomiasis. Parasite Immunol 36: 347357.

  • 17.

    Chatterjee S, Nutman TB, 2015. Helminth-induced immune regulation: implications for immune responses to tuberculosis. PLoS Pathog 11: e1004582.

    • Search Google Scholar
    • Export Citation
  • 18.

    Loukas A, Prociv P, 2001. Immune responses in hookworm infections. Clin Microbiol Rev 14: 689703.

  • 19.

    George PJ, Anuradha R, Kumar NP, Sridhar R, Banurekha VV, Nutman TB, Babu S, 2014. Helminth infections coincident with active pulmonary tuberculosis inhibit mono- and multifunctional CD4+ and CD8+ T cell responses in a process dependent on IL-10. PLoS Pathog 10: e1004375.

    • Search Google Scholar
    • Export Citation
  • 20.

    Passos Vazquez CM, Mendes Netto RS, Ferreira Barbosa KB, Rodrigues de Moura T, de Almeida RP, Duthie MS, Ribeiro de Jesus A, 2014. Micronutrients influencing the immune response in leprosy. Nutr Hosp 29: 2636.

    • Search Google Scholar
    • Export Citation
  • 21.

    Katona P, Katona-Apte J, 2008. The interaction between nutrition and infection. Clin Infect Dis 46: 15821588.

  • 22.

    Nussenblatt V, Semba RD, 2002. Micronutrient malnutrition and the pathogenesis of malarial anemia. Acta Trop 82: 321337.

  • 23.

    Scollard DM, Adams LB, Gillis TP, Krahenbuhl JL, Truman RW, Williams DL, 2006. The continuing challenges of leprosy. Clin Microbiol Rev 19: 338381.

  • 24.

    Lima ES, Roland Ide A, Maroja Mde F, Marcon JL, 2007. Vitamin A and lipid peroxidation in patients with different forms of leprosy. Rev Inst Med Trop Sao Paulo 49: 211214.

    • Search Google Scholar
    • Export Citation
  • 25.

    Mandal D, Reja AH, Biswas N, Bhattacharyya P, Patra PK, Bhattacharya B, 2015. Vitamin D receptor expression levels determine the severity and complexity of disease progression among leprosy reaction patients. New Microbes New Infect 6: 3539.

    • Search Google Scholar
    • Export Citation
  • 26.

    Couto LD et al. 2014. Neglected tropical diseases: prevalence and risk factors for schistosomiasis and soil-transmitted helminthiasis in a region of Minas Gerais State, Brazil. Trans R Soc Trop Med Hyg 108: 363371.

    • Search Google Scholar
    • Export Citation
  • 27.

    Fonseca F, Freitas C, Dutra L, Guimaraes R, Carvalho O, 2014. Spatial modeling of the Schistosomiasis mansoni in Minas Gerais State, Brazil using spatial regression. Acta Trop 133: 5663.

    • Search Google Scholar
    • Export Citation
  • 28.

    Scholte RG, Schur N, Bavia ME, Carvalho EM, Chammartin F, Utzinger J, Vounatsou P, 2013. Spatial analysis and risk mapping of soil-transmitted helminth infections in Brazil, using Bayesian geostatistical models. Geospat Health 8: 97110.

    • Search Google Scholar
    • Export Citation
  • 29.

    Ridley DS, Jopling WH, 1966. Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis 34: 255273.

    • Search Google Scholar
    • Export Citation
  • 30.

    Ministry of Health of Brazil, 2014. Dietary Guidelines for the Brazilian Population.

  • 31.

    Katz N, Chaves A, Pellegrino J, 1972. A simple device for quantitative stool thick-smear technique in Schistosomiasis mansoni. Rev Inst Med Trop Sao Paulo 14: 397400.

    • Search Google Scholar
    • Export Citation
  • 32.

    Hoffman WAPJ, Janer JL, 1934. The sedimentation-concentration method in Schistosomiasis mansoni. PR J Publ Hlth Trop Med 9: 283298.

  • 33.

    Oliveira WJ et al. 2018. Evaluation of diagnostic methods for the detection of intestinal schistosomiasis in endemic areas with low parasite loads: saline gradient, Helmintex, Kato-Katz and rapid urine test. PLoS Negl Trop Dis 12: e0006232.

    • Search Google Scholar
    • Export Citation
  • 34.

    Espirito-Santo MC et al. 2015. Comparative study of the accuracy of different techniques for the laboratory diagnosis of Schistosomiasis mansoni in areas of low endemicity in Barra Mansa city, Rio de Janeiro state, Brazil. Biomed Res Int 2015: 135689.

    • Search Google Scholar
    • Export Citation
  • 35.

    Gomes YM, Pereira VR, Nakazawa M, Montarroyos U, Souza WV, Abath FG, 2002. Antibody isotype responses to egg antigens in human chronic Schistosomiasis mansoni before and after treatment. Mem Inst Oswaldo Cruz 97 (Suppl 1): 111112.

    • Search Google Scholar
    • Export Citation
  • 36.

    Hagan P, Blumenthal UJ, Dunn D, Simpson AJ, Wilkins HA, 1991. Human IgE, IgG4 and resistance to reinfection with Schistosoma haematobium. Nature 349: 243245.

    • Search Google Scholar
    • Export Citation
  • 37.

    Lamberton PH, Jourdan PM, 2015. Human ascariasis: diagnostics update. Curr Trop Med Rep 2: 189200.

  • 38.

    DuVall AS, Fairley JK, Sutherland L, Bustinduy AL, Mungai PL, Muchiri EM, Malhotra I, Kitron U, King CH, 2014. Development of a specimen-sparing multichannel bead assay to detect antiparasite IgG4 for the diagnosis of Schistosoma and Wuchereria infections on the coast of Kenya. Am J Trop Med Hyg 90: 638645.

    • Search Google Scholar
    • Export Citation
  • 39.

    Machado ER, Faccioli LH, Costa-Cruz JM, Lourenço EV, Roque-Barreira MC, Gonçalves-Pires Mdo R, Ueta MT, 2008. Strongyloides venezuelensis: the antigenic identity of eight strains for the immunodiagnosis of human strongyloidiasis. Exp Parasitol 119: 714.

    • Search Google Scholar
    • Export Citation
  • 40.

    World Health Organization, 2011. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. Available at: http://www.who.int/vmnis/indicators/haemoglobin.pdf. Accessed April 19, 2016.

    • Search Google Scholar
    • Export Citation
  • 41.

    Namaste SM et al. 2017. Adjusting ferritin concentrations for inflammation: biomarkers reflecting inflammation and nutritional determinants of anemia (BRINDA) project. Am J Clin Nutr 106: 359S71S.

    • Search Google Scholar
    • Export Citation
  • 42.

    Raiten DJ, Sakr Ashour FA, Ross AC, Meydani SN, Dawson HD, Stephensen CB, Brabin BJ, Suchdev PS, van Ommen B, INSPIRE Consultative Group, 2015. Inflammation and nutritional science for programs/policies and interpretation of research evidence (INSPIRE). J Nutr 145: 1039S108S.

    • Search Google Scholar
    • Export Citation
  • 43.

    Grant FK, Suchdev PS, Flores-Ayala R, Cole CR, Ramakrishnan U, Ruth LJ, Martorell R, 2012. Correcting for inflammation changes estimates of iron deficiency among rural Kenyan preschool children. J Nutr 142: 105111.

    • Search Google Scholar
    • Export Citation
  • 44.

    Larson LM, Guo J, Williams AM, Young MF, Ismaily S, Addo OY, Thurnham D, Tanumihardjo SA, Suchdev PS, Northrop-Clewes CA, 2018. Approaches to assess vitamin A status in settings of inflammation: biomarkers reflecting inflammation and nutritional determinants of anemia (BRINDA) project. Nutrients 10: E1100.

    • Search Google Scholar
    • Export Citation
  • 45.

    Holick MF, 2006. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc 81: 353373.

  • 46.

    Bandeira F, Griz L, Dreyer P, Eufrazino C, Bandeira C, Freese E, 2006. Vitamin D deficiency: a global perspective. Arq Bras Endocrinol Metabol 50: 640646.

    • Search Google Scholar
    • Export Citation
  • 47.

    Lu’o’ng K, Nguyen LT, 2012. Role of the vitamin D in leprosy. Am J Med Sci 343: 471482.

  • 48.

    Mutapi F, Roussilhon C, Mduluza T, Druilhe P, 2007. Anti-malaria humoral responses in children exposed to Plasmodium falciparum and Schistosoma haematobium. Mem Inst Oswaldo Cruz 102: 405409.

    • Search Google Scholar
    • Export Citation
  • 49.

    Silva EA, Iyer A, Ura S, Lauris JR, Naafs B, Das PK, Vilani-Moreno F, 2007. Utility of measuring serum levels of anti-PGL-I antibody, neopterin and C-reactive protein in monitoring leprosy patients during multi-drug treatment and reactions. Trop Med Int Health 12: 14501458.

    • Search Google Scholar
    • Export Citation
  • 50.

    Foss NT, de Oliveira EB, Silva CL, 1993. Correlation between TNF production, increase of plasma C-reactive protein level and suppression of T lymphocyte response to concanavalin a during erythema nodosum leprosum. Int J Lepr Other Mycobact Dis 61: 218226.

    • Search Google Scholar
    • Export Citation
  • 51.

    Antunes DE, Araujo S, Ferreira GP, Cunha AC, Costa AV, Gonçalves MA, Goulart IM, 2013. Identification of clinical, epidemiological and laboratory risk factors for leprosy reactions during and after multidrug therapy. Mem Inst Oswaldo Cruz 108: 901908.

    • Search Google Scholar
    • Export Citation
  • 52.

    Scollard DM, Martelli CM, Stefani MM, Maroja Mde F, Villahermosa L, Pardillo F, Tamang KB, 2015. Risk factors for leprosy reactions in three endemic countries. Am J Trop Med Hyg 92: 108114.

    • Search Google Scholar
    • Export Citation
  • 53.

    Ranque B, Nguyen VT, Vu HT, Nguyen TH, Nguyen NB, Pham XK, Schurr E, Abel L, Alcaïs A, 2007. Age is an important risk factor for onset and sequelae of reversal reactions in Vietnamese patients with leprosy. Clin Infect Dis 44: 3340.

    • Search Google Scholar
    • Export Citation
  • 54.

    Scollard DM, Smith T, Bhoopat L, Theetranont C, Rangdaeng S, Morens DM, 1994. Epidemiologic characteristics of leprosy reactions. Int J Lepr Other Mycobact Dis 62: 559567.

    • Search Google Scholar
    • Export Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

The Burden of Helminth Coinfections and Micronutrient Deficiencies in Patients with and without Leprosy Reactions: A Pilot Study in Minas Gerais, Brazil

View More View Less
  • 1 Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia;
  • | 2 Faculdade Saúde e Ecologia Humana (FASEH), Vespasiano, Brazil;
  • | 3 Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
  • | 4 Secretaria de Estado da Saúde de Minas Gerais, Belo Horizonte, Brazil;
  • | 5 Hospital Eduardo de Menezes, Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte, Brazil;
  • | 6 Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia;
  • | 7 Departamento de Parasitologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
  • | 8 Laboratório São Marcos, Belo Horizonte, Brazil;
  • | 9 Department of Environmental Sciences, Emory University, Atlanta, Georgia
Restricted access

Leprosy reactions are immune-mediated complications occurring in up to 50% of patients. The immune consequences of helminth infections and micronutrient deficiencies suggest a potential role in type 1 reactions (T1R) or type 2 reactions (T2R). We conducted a case–control study in Minas Gerais, Brazil, to evaluate whether comorbidities and other factors are associated with reactions in patients with multibacillary leprosy. Stool and serum were tested for helminth infections. Deficiencies of vitamin A, D, and iron were measured using serum retinol, 25-hydroxyvitamin D, and ferritin, respectively. Logistic regression models identified associations between reactions and helminth infections, micronutrient deficiencies, and other variables. Seventy-three patients were enrolled, 24 (33%) with T1R, 21 (29%) with T2R, 8 (15%) with mixed T1R/T2R, and 20 (27%) without reactions. Evidence of helminth infections were found in 11 participants (15%) and included IgG4 reactivity against Schistosoma mansoni, Strongyloides, and Ascaris antigens. Thirty-eight (52%) had vitamin D deficiency, eight (11%) had vitamin A insufficiency, 21 (29%) had anemia, and one (1.4%) had iron deficiency. Multivariable logistic regression showed no statistically significant associations between helminth coinfections and total reactions (adjusted odds ratios [aOR]: 1.36, 95% CI: 0.22, 8.33), T1R (aOR: 0.85, 95% CI: 0.17, 4.17), or T2R (aOR: 2.41, 95% CI: 0.29, 20.0). Vitamin D deficiency and vitamin A insufficiency were also not statistically associated with reactions. However, vitamin deficiencies and helminth infections were prevalent in these patients, suggesting a potential role for additional treatment interventions. Studying reactions prospectively may further clarify the role of comorbidities in the clinical presentation of leprosy.

Author Notes

Address correspondence to Jessica K. Fairley, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 550 Peachtree St., NE 7th Floor, Atlanta, GA 30308. E-mail: jessica.fairley@emory.edu

Financial support: Charitable funds from the Order of St. Lazarus, Grand Priory of America, contributed to the operational expenses of this study.

Authors’ addresses: Jessica K. Fairley, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, E-mail: jessica.fairley@emory.edu. Jose A. Ferreira, Thelma de Filippis, Laura Pinheiro Chaves, Luiza Navarro Caldeira, Paola Souza dos Santos, Rafaella Rodrigues Costa, Maria Cavallieri Diniz, Carolina Soares Duarte, and Sandra Lyon, Faculdade Saúde e Ecologia Humana (FASEH), Vespasiano, Brazil, E-mails: jantgferr@hotmail.com, filippis1@hotmail.com, laurapvic@gmail.com, lu.navarro.caldeira@gmail.com, med.paola.santos@gmail.com, rafaellarcosta@live.com, miacavallieri@hotmail.com, and carolina-sd@hotmail.com. Ana Laura Grossi de Oliveira, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil, E-mail: analauragrossi@gmail.com. Maria Aparecida de Faria Grossi, Secretaria de Estado da Saúde de Minas Gerais, Belo Horizonte, Brazil, E-mail: cida@grossi.com.br. Luiz Alberto Bomjardim Pôrto, Hospital Eduardo de Menezes, FHEMIG, Belo Horizonte, Brazil, E-mail: luizalbertobp@yahoo.com.br. Parminder S. Suchdev, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, E-mail: psuchde@emory.edu. Deborah Aparecida Negrão-Corrê, Fernanda do Carmo Magalhães, and João Marcelo Peixoto Moreira, Departamento de Parasitologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil, E-mails: denegrao@icb.ufmg.br, nandademagalhaes@yahoo.com.br, and peixotomoreira@gmail.com. Adelino de Melo Freire Júnior and Mariana Costa Cerqueira, Laboratório São Marcos, Belo Horizonte, Brazil, E-mails: adelino.melo@saomarcoslaboratorio.com.br and mariana@saomarcoslaboratorio.com.br. Uriel Kitron, Department of Environmental Sciences, Emory University, Atlanta, GA, E-mail: ukitron@emory.edu.

Save