• 1.

    WHO, 2018. Leishmaniasis. Available at: http://www.who.int/es/news-room/fact-sheets/detail/leishmaniasis. Accessed July 24, 2018.

  • 2.

    Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M, the WHO Leishmaniasis Control Team, 2012. Leishmaniosis worldwide and global estimates of its incidence. PLoS One 7: e35671.

    • Search Google Scholar
    • Export Citation
  • 3.

    Giménez-Ayala A, Ruoti M, González-Brítez N, Torales M, Rojas de Arias A, 2017. Situación epidemiológica de las leishmaniosis y percepción de actores claves en el departamento de Alto Paraná Paraguay. Mem Inst Investig Cienc Salud 15: 8596.

    • Search Google Scholar
    • Export Citation
  • 4.

    Rangel EF, Costa SM, Carvalho BM, 2014. Environmental changes and the geographic spreading of American cutaneous leishmaniosis in Brazil. Claborn D, ed. Leishmaniosis–Trends in Epidemiology, Diagnosis and Treatment. Rijeka, Croatia: InTech.

    • Search Google Scholar
    • Export Citation
  • 5.

    WHO, 2010. Control of the Leishmaniasis: Report of a Meeting of the WHO Expert Committee on the Control of Leishmaniases. WHO Tech. Rep. Ser. 9491–186, March 22–26, 2010, Geneva, Switzerland.

  • 6.

    Servicio Nacional de Erradicación del Paludismo (SENEPA), 2015. Leishmaniasis Tegumentaria (LTA) Situación Epidemiológica. Boletín Semanal N° 23. Asunción, Paraguay: MSPyBS. Available at: https://www.mspbs.gov.py/senepa.

    • Search Google Scholar
    • Export Citation
  • 7.

    Servicio Nacional de Erradicación del Paludismo (SENEPA), 2018. Manual de Diagnóstico y Tratamiento de las Leishmaniosis. Asunción Paraguay: Ministerio de Salud Pública y Bienestar Social, OPS/OMS.

    • Search Google Scholar
    • Export Citation
  • 8.

    Marco JD et al. 2012. Polymorphism-specific PCR enhances the diagnostic performance of American tegumentary leishmaniasis and allows the rapid identification of Leishmania species from Argentina. BMC Infect Dis 12: 191.

    • Search Google Scholar
    • Export Citation
  • 9.

    Pacheco RS, Santos EGO, Barbosa, Brito CMM, Pires MQ, Marzochi MCA, 1999. Epidemiological and genotypical mapping of human Leishmania (Viannia) braziliensis in Paraguay. J Protozool Res 9: 7687.

    • Search Google Scholar
    • Export Citation
  • 10.

    Chena L, Nara E, Canese A, Oddone R, Russomando G, 2013. Aplicación de la PCR para la aplicación de género y complejos de Leishmania en diferentes tipos de muestras biológicas. Mem Inst Investig Cienc Salud 9: 4551.

    • Search Google Scholar
    • Export Citation
  • 11.

    Lainson R, Shaw JJ, 1987. Evolution Classification and Geographical Distribution. Peters W, Killick-Kendrick K, ed. The Leishmaniasis in Biology and Medicine, Vol. 1. London, United Kingdom: Academic Press, 1128.

    • Search Google Scholar
    • Export Citation
  • 12.

    Grimaldi G Jr., Tesh RB, McMahon-Pratt D, 1989. A review of the geographic distribution and epidemiology of leishmaniosis in the New World. Am J Trop Med Hyg 41: 687725.

    • Search Google Scholar
    • Export Citation
  • 13.

    Dorval MEC, Oshiro ET, Cupolillo E, Castro ACC, Alves T, 2006. Ocorrência de leishmaniose tegumentar Americana no Estado Mato Grosso do Sul associada à infecção por Leishmania (Leishmania) amazonensis. Rev Soc Bras Med Trop 39: 4346.

    • Search Google Scholar
    • Export Citation
  • 14.

    Fernández OL, Díaz-Toro Y, Ovalle C, Valderrama L, Muvdi S, Rodríguez I, Gomez MA, Saravia NG, 2014. Miltefosine and antimonial drug susceptibility of Leishmania Viannia species and populations in regions of high transmission in Colombia. PLoS Negl Trop Dis 8: 111.

    • Search Google Scholar
    • Export Citation
  • 15.

    Romero GAS, Vinitius M, Guerra DF, Paes MG, Mace VDO, 2001. Comparison of cutaneous leishmaniasis due to Leishmania (Viannia) braziliensis and L. (V.) guyanensis in Brazil. Clin Infect Dis 32: 13041312.

    • Search Google Scholar
    • Export Citation
  • 16.

    McIntyre S, Rangel EF, Ready PD, Carvalho BM, 2017. Species-specific ecological niche modeling predicts different range contractions for Lutzomyia intermedia and a related vector of Leishmania braziliensis following climate change in South America. Parasit Vectors 10: 157.

    • Search Google Scholar
    • Export Citation
  • 17.

    Brilhante FA, Nunes BLV, Kohatsu KA, Galati BEA, Rocca MEG, Ishikawa EAY, 2015. Natural infection of phlebotomines (Diptera: Psychodidae) by Leishmania (Leishmania) amazonensis in an area of ecotourism in central-western Brazil. JVATITD. https://doi.org.10.1186/s40409-015-0041-8.

    • Search Google Scholar
    • Export Citation
  • 18.

    Oliveira EF, Casaril AE, Mateus NLF, Murat PG, Fernandes WS, Oshiro ET, Oliveira AG, Galati EAB, 2015. Leishmania amazonensis DNA in wild females of Lutzomyia cruzi (Diptera: Psychodidae) in the state of Mato Grosso do Sul, Brazil. Mem Inst Osw Cruz 110: 10511057.

    • Search Google Scholar
    • Export Citation
  • 19.

    Hashiguchi Y, Arias O, Maciel D, Manzur J, Furuya M, Kawabata M, 1991. Cutaneous leishmaniosis in south-eastern Paraguay: a study of an endemic area at Limóy. Trans R Soc Trop Med Hyg 85: 592594.

    • Search Google Scholar
    • Export Citation
  • 20.

    Torales M, Martínez N, Franco L, 2014. Phlebotominae (Diptera: Psychodidae) y especies consideradas como vectores de leishmaniosis en Paraguay. Rev Paraguaya Epidemiol 1: 3335.

    • Search Google Scholar
    • Export Citation
  • 21.

    Paiva BR, Secundino NFC, Nascimento JC, Pimenta PFP, Galati EAB, Andrade Junior HF, Malafronte RS, 2006. Detection and identification of Leishmania species in field-captured phlebotomine sandflies based on mini-exon gene PCR. Acta Trop 99: 252259.

    • Search Google Scholar
    • Export Citation
  • 22.

    Scarpassa VM, Alencar RB, 2012. Lutzomyia umbratilis, the main vector of Leishmania guyanensis, represents a novel species complex. PLoS One 7: e37341.

    • Search Google Scholar
    • Export Citation
  • 23.

    Francesconi VA, Francesconi F, Ramasawmy R, Romero GAS, Alecrim MDGC, 2018. Failure of fluconazole in treating cutaneous leishmaniasis caused by Leishmania guyanensis in the Brazilian Amazon: an open, nonrandomized phase 2 trial. Plos Negl Trop Dis 12: e0006225.

    • Search Google Scholar
    • Export Citation
  • 24.

    Caldart ET, Freire RL, Ferreira FP, Ruffolo BB, Sbeghen MR, Mareze M, Garcia JL, Breganó RM, Navarro IT, 2017. Leishmania in synanthropic rodents (Rattus rattus): new evidence for the urbanization of Leishmania (Leishmania) amazonensis Rev Bras Parasitol Vet 26: 1727.

    • Search Google Scholar
    • Export Citation
  • 25.

    Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ, 2003. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49: 853860.

    • Search Google Scholar
    • Export Citation
  • 26.

    Zampieri RA, Laranjeira-Silva MF, Muxel SM, Stocco de Lima AC, Shaw JJ, Floeter-Winter LM, 2016. High resolution melting analysis targeting hsp70 as a fast and efficient method for the discrimination of Leishmania species. PLoS Negl Trop Dis 10: e0004485.

    • Search Google Scholar
    • Export Citation
  • 27.

    El Tai NO, Osmar OF, El Fari M, Presber WH, Schönian G, 2000. Genetic heterogeneity of ribosomal internal transcribed spacer in clinical samples of Leishmania donovani spotted on filter paper as revealed by single-strand conformation polymorphisms and sequencing. Trans R Soc Trop Med Hyg 94: 575579.

    • Search Google Scholar
    • Export Citation
  • 28.

    Schönian G, Nascreddin A, Dinse N, Shwynoch C, Schallig HDFH, Presber W, Jaffe CL, 2003. PCR diagnosis and characterization of Leishmania in local and imported clinical samples. Diagn Microbiol Infect Dis 47: 349358.

    • Search Google Scholar
    • Export Citation
  • 29.

    Hall TA, 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 9598.

    • Search Google Scholar
    • Export Citation
  • 30.

    Banowary B et al. 2015. Differentiation of Campylobacter jejuni and Campylobacter coli using multiplex-PCR and high resolution melt curve analysis. PLoS One 10: e0138808.

    • Search Google Scholar
    • Export Citation
  • 31.

    Kagkli DM, Folloni S, Barbau-Piednoir E, Van den Eede G, Van den Bulcke M, 2012. Towards a pathogenic Escherichia coli detection platform using multiplex SYBR®Green real-time PCR methods and high resolution melting analysis. PLoS One 7: e39287.

    • Search Google Scholar
    • Export Citation
  • 32.

    Goldschmidt P, Degorge S, Che Sarria P, Benallaoua D, Semoun O, Borderie V, Laroche L, Chaumeil C, 2012. New strategy for rapid diagnosis and characterization of fungal infections: the example of corneal scrapings. PLoS One 7: e37660.

    • Search Google Scholar
    • Export Citation
  • 33.

    Lee T-H, Wu T-S, Tseng C-P, Qiu JT, 2012. High-resolution melting molecular signatures for rapid identification of human papillomavirus genotypes. PLoS One 7: e42051.

    • Search Google Scholar
    • Export Citation
  • 34.

    Henández C, Alvarez C, González C, Ayala MS, León CM, Ramírez JD, 2014. Identification of six New World Leishmania species through the implementation of a high-resolution melting (HRM) genotyping assay. Parasit Vectors 7: 501.

    • Search Google Scholar
    • Export Citation
  • 35.

    Garcia AL, Parrado R, Rojas E, Delgado R, Dujardin JC, Reithinger R, 2009. Leishmaniasis in Bolivia: comprehensive review and current status. Am J Trop Med Hyg 80: 704711.

    • Search Google Scholar
    • Export Citation
  • 36.

    García Bustos MF et al. 2016. Clinical and epidemiological features of leishmaniasis in northwestern-Argentina through a retrospective analysis of recent cases. Acta Trop 154: 125132.

    • Search Google Scholar
    • Export Citation
  • 37.

    Pires Ada S et al. 2015. Identification and biological characterization of Leishmania (Viannia) guyanensis isolated from a patient with tegumentary leishmaniasis in Goiás, a nonendemic area for this species in Brazil. Biomed Res Int 2015: 350764.

    • Search Google Scholar
    • Export Citation
  • 38.

    Silveira FT, Lainson R, Corbett CEB, 2004. Clinical and immunopathological spectrum of American cutaneous leishmaniosis with special reference to the disease in Amazonia, Brazil–a review. Mem Inst Osw Cruz 99: 239251.

    • Search Google Scholar
    • Export Citation
  • 39.

    Moya SL, Giuliani MG, Santini MS, Quintana MG, Salomón OD, Liotta DJ, 2017. Leishmania infantum DNA detected in phlebotomine species from Puerto Iguazú city, Misiones province, Argentina. Acta Trop 172: 122124.

    • Search Google Scholar
    • Export Citation
  • 40.

    Thomaz Soccol V et al. 2018. Hidden danger: unexpected scenario in the vector-parasite dynamics of leishmaniases in the Brazil side of triple border (Argentina, Brazil and Paraguay). PLoS Negl Trop Dis 12: e0006336.

    • Search Google Scholar
    • Export Citation
  • 41.

    Salvioni OD, González Brítez N, Giménez Ayala A, Vega Gómez MC, Gonzalez Sander M, Ferreira Coronel M, Martínez N, Rojas de Arias A, 2017. First DNA report of Leishmania infantum in Evandromyia (complex) coortelezzii and Lutzomyia longipalpis in Alto Paraná, Paraguay, Int J Curr Res 9: 5593155934.

    • Search Google Scholar
    • Export Citation
  • 42.

    Joachim Richter J, Hanus I, Häussinger D, Löscher T, Harms G, 2011. Mucosal Leishmania infantum infection. Parasitol Res 109: 959962.

  • 43.

    Agrela I, Sánchez E, 2009. Prevalencia de la infección por Leishmania spp. en un área periurbana de Altagracia de Orituco, estado Guárico, Venezuela. Bol Mal Salud Amb 29: 107116.

    • Search Google Scholar
    • Export Citation
  • 44.

    Castro LS, França AO, Ferreira EC, Hans Filho G, Higa Júnior MG, Gontijo CMF, Pereira AAS, Dorval MEMC, 2016. Leishmania infatum as a causative agent of cutaneous leishmaniasis in the State of Mato Grosso do Sul, Brazil. Rev Inst Med Trop Sao Paulo 58: 23.

    • Search Google Scholar
    • Export Citation
  • 45.

    Lyra MR, Pementel MIF, Madeira MF, Antonio LF, Lyra JPM, Fagundes A, Schubach AO, 2015. First report of cutaneous leishmaniasis caused by Leishmania (Leishmania) infantum chagasi in an urban area of Rio de Janeiro, Brazil. Rev Inst Med Trop 57: 451454.

    • Search Google Scholar
    • Export Citation
  • 46.

    Caballero AA, Pinto CG, Oddone RV, De Sanchez MG, De Paula N, Almeida F, 2013. Leishmaniasis cutánea Atípica por L. infantum (Chagasi). Anales Fac Cienc Méd 46: 6168.

    • Search Google Scholar
    • Export Citation
  • 47.

    Salvioni OD, Pereira J, Sander MG, Gómez CV, 2017. Molecular detection of Leishmania infantum in atypical cutaneous lesions from Paraguayan patients. J Dermatol Clin Res 5: 1104.

    • Search Google Scholar
    • Export Citation
 
 
 
 

 

 
 

 

 

 

 

 

 

First Molecular Report of Leishmania (Leishmania) amazonensis and Leishmania (Viannia) guyanensis in Paraguayan Inhabitants Using High-Resolution Melt-PCR

View More View Less
  • 1 Centro para el Desarrollo de la Investigación Científica, Asunción, Paraguay;
  • | 2 Centro de Especialidades Dermatológicas - Programa Nacional de Control de la Lepra, San Lorenzo, Paraguay

American tegumentary leishmaniasis is an endemic anthropozoonosis undergoing expansion on the American continent. The disease is caused by several Leishmania species and it is manifested as cutaneous and mucocutaneous leishmaniasis. In this study, we evaluate the viability of high-resolution melt polymerase chain reaction (HRM-PCR) analysis to differentiate four closely related Leishmania species as a routine tool for the diagnosis of leishmaniasis. For this purpose, biopsy specimens from cutaneous and mucocutaneous lesions were taken from 132 individuals from endemic and non-endemic areas for leishmaniasis. Each sample was processed for parasitological, histopathological, and molecular analysis. Positive biopsy samples were analyzed by HRM-PCR of a 144-bp heat-shock protein (hsp70) gene fragment, and new cases were confirmed by sequencing. Of the 132 samples analyzed, 36 (27%) were positive for Leishmania spp., of which 86% were from cutaneous lesions and 14% from mucocutaneous lesions. We identified Leishmania (Viannia) braziliensis (84%), Leishmania (Leishmania) infantum (13%), and Leishmania (Leishmania) amazonensis (3%) in cutaneous lesions, and L. (V.) braziliensis (40%), L. (L.) infantum (20%), L. (L.) amazonensis (20%), and Leishmania (Viannia) guyanensis (20%) in mucocutaneous lesions. The main purpose of this research was to report for the first time in Paraguay the presence of L. (L.) amazonensis and L. (V.) guyanensis in patients with cutaneous and mucocutaneous lesions, using the HRM-PCR technique. In addition, we report the presence of additional new cases of L. (L.) infantum in cutaneous lesions.

Author Notes

Address correspondence to Celeste Vega Gómez, Centro para el Desarrollo de la Investigación Científica, Manduvira 635 entre 15 de Agosto y O’ Leary, Asunción 1255, Paraguay. E-mails: www.cedicpy.com or mcvegagomez@gmail.com

Financial support: This study was partially supported by the research project Education and Biotechnology Applied to Health—FOCEM/MERCOSUR COF N°03/11. O. D. S., M. S. R., C. V. G., and A. R. d. A. would like to thank PRONII-CONACYT (National Incentive Program to Researchers of the National Science and Technological Council) for financial support.

Authors’ addresses: Oscar Daniel Salvioni Recalde, Miriam Soledad Rolon, Antonieta Rojas de Arias, and Celeste Vega Gómez, Centro para el Desarrollo de la investigación Científica, Asunción, Paraguay, E-mails: danioni87@gmail.com, rolonmiriam@gmail.com, rojasdearias@gmail.com, and mcvegagomez@gmail.com. José Pereira Brunelli and Olga Aldama, Centro de Especialidades Dermatológicas - Programa Nacional de Control de la Lepra, San Lorenzo, Paraguay, E-mails: jose_pereira15@hotmail.com and olgaaldama@yahoo.com.ar.

Save