High Rates of Exposures to Waterborne Pathogens in Indigenous Communities in the Amazon Region of Ecuador

Natalia Romero-Sandoval School of Medicine, Universidad Internacional del Ecuador, Quito, Ecuador;
Grups de Recerca d’Amèrica i Àfrica Llatines - GRAAL, Barcelona, Spain;

Search for other papers by Natalia Romero-Sandoval in
Current site
Google Scholar
PubMed
Close
,
Lizeth Cifuentes School of Medicine, Universidad Internacional del Ecuador, Quito, Ecuador;

Search for other papers by Lizeth Cifuentes in
Current site
Google Scholar
PubMed
Close
,
Gabriela León School of Medicine, Universidad Internacional del Ecuador, Quito, Ecuador;

Search for other papers by Gabriela León in
Current site
Google Scholar
PubMed
Close
,
Paola Lecaro School of Medicine, Universidad Internacional del Ecuador, Quito, Ecuador;

Search for other papers by Paola Lecaro in
Current site
Google Scholar
PubMed
Close
,
Claudia Ortiz-Rico Unidad de Bioestadística, Facultad de Medicina, Universidad Autónoma de Barcelona, Barcelona, Spain;
Grupo Salud-Comunid-Universidad de Santander, Facultad de Ciencias de la Salud, Universidad de Santander, Bucaramanga, Colombia;

Search for other papers by Claudia Ortiz-Rico in
Current site
Google Scholar
PubMed
Close
,
Philip Cooper School of Medicine, Universidad Internacional del Ecuador, Quito, Ecuador;
St. George’s University, London, United Kingdom;
Fundación Ecuatoriana para la Investigación en Salud, FEPIS, Quinindé, Ecuador

Search for other papers by Philip Cooper in
Current site
Google Scholar
PubMed
Close
, and
Miguel Martín School of Medicine, Universidad Internacional del Ecuador, Quito, Ecuador;
Grups de Recerca d’Amèrica i Àfrica Llatines - GRAAL, Barcelona, Spain;
Unidad de Bioestadística, Facultad de Medicina, Universidad Autónoma de Barcelona, Barcelona, Spain;

Search for other papers by Miguel Martín in
Current site
Google Scholar
PubMed
Close
Restricted access

Waterborne pathogens, associated with poverty and poor sanitary conditions, are a major cause of morbidity and mortality worldwide. There are limited data on the epidemiology of waterborne pathogens in indigenous populations living in the Amazon region. We did a cross-sectional survey in two indigenous Shuar communities in the Amazon region of Ecuador in which we documented the presence of pathogens representing different sources of environmental contamination of water. We detected protozoa and soil-transmitted helminths by microscopy of fecal samples and the presence of IgG antibodies to hepatitis A and Leptospira spp. in blood samples from individuals older than 2 years and collected data by questionnaire on sociodemographic factors and knowledge of infectious diseases. Seroprevalence for hepatitis A and Leptospira spp. were 98.1% (95% CI: 97.0–99.8) and 50.0% (95% CI: 43.3–56.6), respectively, whereas 62.6% (95% CI: 55.8–69.4) had enteric parasites in stool samples. In participants older than 6 years, eight of 10 had evidence of infection with or exposure to at least one of the pathogens studied. Although prevalence of pathogens varied by age, it did not vary significantly by gender, temporal migration, illiteracy, perceived morbidity, receipt of conditional cash transfers, water boiling practices, poor housing conditions, and anthropometric status. These findings indicate a high level of contamination of drinking water by human pathogens in these indigenous communities and the need for interventions to improve access to and use of clean drinking water in these marginalized communities.

Author Notes

Address correspondence to Natalia Romero-Sandoval, Escuela de Medicina, Universidad Internacional del Ecuador, Av. Jorge Fernández s/n and Simón Bolívar, Quito 170113, Ecuador. E-mail: nromero@uide.edu.ec

Financial support: This study was supported by a grant from the University Internacional del Ecuador (Grant Number UIDE-EDM01-2015).

Disclosure: The authors declare that the procedures followed the ethical standards of the human ethics committee that approve the protocol in accordance with guidelines of the World Medical Association and the Declaration of Helsinki. The protocol was approved by the Ethics Committees of the Universidad Internacional del Ecuador and the Ecuadorian Minister of Public Health. The authors declare that no patient’s personal data appear in this paper. The authors declare that no patient personal data appears in this paper.

Authors’ addresses: Natalia Romero-Sandoval, School of Medicine, Universidad Internacional del Ecuador, Quito, Ecuador, and Grups de Recerca d’Amèrica i Àfrica Llatines - GRAAL, Barcelona, Spain, E-mail: nromero@uide.edu.ec. Lizeth Cifuentes, Gabriela León, and Paola Lecaro, School of Medicine, Universidad Internacional del Ecuador, Quito, Ecuador, E-mails: lizethc21@yahoo.com, gaby_lm24@hotmail.com, and plaeoclaar@hotmail.com. Claudia Ortiz-Rico, Unidad de Bioestadística, Facultad de Medicina, Universidad Autónoma de Barcelona, Barcelona, Spain, and Grupo Salud-Comunid-UDES SCU, Facultad de Ciencias de la Salud, Universidad de Santander, Bucaramanga, Colombia, E-mail: clanura@gmail.com. Philip Cooper, School of Medicine, Universidad Internacional del Ecuador, Quito, Ecuador, St. George’s University, London, United Kingdom, and Fundación Ecuatoriana para la Investigación en Salud, FEPIS, Quinindé, Ecuador, E-mail: pcooper@sgul.ac.uk. Miguel Martín, School of Medicine, Universidad Internacional del Ecuador, Quito, Ecuador, Grups de Recerca d’Amèrica i Àfrica Llatines - GRAAL, Barcelona, Spain, and Unidad de Bioestadística, Facultad de Medicina, Universidad Autónoma de Barcelona, Barcelona, Spain, E-mail: miquel.martin@uab.cat.

  • 1.

    UN Water, World Health Organization, 2016. Investing in Water and Sanitation: Increasing Access, Reducing Inequalities: GLAAS 2014 Findings–Highlights for the Region of the Americas. Geneva, Switzerland: WHO Press.

    • Search Google Scholar
    • Export Citation
  • 2.

    Vijayachari P, Sugunan AP, Shriram AN, 2008. Leptospirosis: an emerging global public health problem. J Biosci 33: 557569.

  • 3.

    Ramírez-Castillo FY, Loera-Muro A, Jacques M, Garneau P, Avelar-González FJ, Harel J, Guerrero-Barrera AL, 2015. Waterborne pathogens: detection methods and challenges. Pathogens 4: 307334.

    • Search Google Scholar
    • Export Citation
  • 4.

    Cann KF, Thomas DR, Salmon RL, Wyn-Jones AP, Kay D, 2013. Extreme water-related weather events and waterborne disease. Epidemiol Infect 141: 671686.

    • Search Google Scholar
    • Export Citation
  • 5.

    Khan K et al. 2018. Prevalent fecal contamination in drinking water resources and potential health risks in Swat, Pakistan. J Environ Sci 72: 112.

    • Search Google Scholar
    • Export Citation
  • 6.

    Neumann NF, Smith DW, Belosevic M, 2005. Waterborne disease: an old foe re-emerging? J Environ Eng Sci. 4:155171.

  • 7.

    Gibney KB, O’Toole J, Sinclair M, Leder K, 2017. Burden of disease attributed to waterborne transmission of selected enteric pathogens, Australia, 2010. Am J Trop Med Hyg 96: 14001403.

    • Search Google Scholar
    • Export Citation
  • 8.

    Gall AM, Mariñas BJ, Lu Y, Shisler JL, 2015. Waterborne viruses: a barrier to safe drinking water. PLoS Pathog 11: e1004867.

  • 9.

    Paiva RFDPS, Souza MFDP, 2018. Association between socioeconomic, health, and primary care conditions and hospital morbidity due to waterborne diseases in Brazil [article in Portuguese]. Cad Saude Publica 34: e00017316.

    • Search Google Scholar
    • Export Citation
  • 10.

    Scheifele DW, De Serres G, Gilca V, Duval B, Milner R, Ho M, Ochnio JJ, 2010. A nationwide survey of past hepatitis A infections among Canadian adults. Vaccine 28: 51745178.

    • Search Google Scholar
    • Export Citation
  • 11.

    García-Fulgueiras A, Rodriguez T, Tormo MJ, Perez-Flores D, Chirlaque D, Navarro C, 1997. Prevalence of hepatitis A antibodies in southeastern Spain: a population-based study. Eur J Epidemiol 13: 481483.

    • Search Google Scholar
    • Export Citation
  • 12.

    Ismail TF et al. 2006. Retrospective serosurvey of leptospirosis among patients with acute febrile illness and hepatitis in Egypt. Am J Trop Med Hyg 75: 10851089.

    • Search Google Scholar
    • Export Citation
  • 13.

    Mayorga O, Bühler S, Jaeger VK, Bally S, Hatz C, Frösner G, Protzer U, Van Damme P, Egger M, Herzog C, 2016. Single-dose hepatitis A immunization: 7.5-year observational pilot study in Nicaraguan children to assess protective effectiveness and humoral immune memory response. J Infect Dis 214: 14981506.

    • Search Google Scholar
    • Export Citation
  • 14.

    Barragan V, Olivas S, Keim P, Pearson T, 2017. Critical knowledge gaps in our understanding of environmental cycling and transmission of Leptospira spp. Appl Environ Microbiol 83: e01190-17.

    • Search Google Scholar
    • Export Citation
  • 15.

    Mesquita GSS, Rocha KS, Monteiro TRM, Rosário MKSD, Baia IWM, Pereira HS, Cerqueira VD, Moraes CCG, 2018. Detection of antibodies against Leptospira spp in free-living marsupials caught in the eastern Amazon. Rev Soc Bras Med Trop 51: 368371.

    • Search Google Scholar
    • Export Citation
  • 16.

    Guedes IB, Araújo SAA, de Souza GO, de Souza Silva SO, Taniwaki SA, Cortez A, Brandão PE, Heinemann MB, 2019. Circulating Leptospira species identified in cattle of the Brazilian Amazon. Acta Trop 191: 212216.

    • Search Google Scholar
    • Export Citation
  • 17.

    Casanovas-Massana A et al. 2018. Spatial and temporal dynamics of pathogenic Leptospira in surface waters from the urban slum environment. Water Res 130: 176184.

    • Search Google Scholar
    • Export Citation
  • 18.

    Ribeiro P et al. 2017. Seroepidemiology of leptospirosis among febrile patients in a rapidly growing suburban slum and a flood-vulnerable rural district in Mozambique, 2012–2014: implications for the management of fever. Int J Infect Dis 64: 5057.

    • Search Google Scholar
    • Export Citation
  • 19.

    Moncayo AL, Lovato R, Cooper PJ, 2018. Soil-transmitted helminth infections and nutritional status in Ecuador: findings from a national survey and implications for control strategies. BMJ Open 8: e021319.

    • Search Google Scholar
    • Export Citation
  • 20.

    Speare R, Durrheim DN, 2004. Strongyloides serology–useful for diagnosis and management of strongyloidiasis in rural indigenous populations, but important gaps in knowledge remain. Rural Remote Health 4: 264.

    • Search Google Scholar
    • Export Citation
  • 21.

    Bain R et al. 2014. Global assessment of exposure to faecal contamination through drinking water based on a systematic review. Trop Med Int Health 19: 917927.

    • Search Google Scholar
    • Export Citation
  • 22.

    Schriewer A, Odagiri M, Wuertz S, Misra PR, Panigrahi P, Clasen T, Jenkins MW, 2015. Human and animal fecal contamination of community water sources, stored drinking water and hands in rural India measured with validated microbial source tracking assays. Am J Trop Med Hyg 93: 509516.

    • Search Google Scholar
    • Export Citation
  • 23.

    Ministerio de Salud Pública de Ecuador, 2016. Enfermedades Zoonóticas 1994–2017 - Dirección Nacional de Vigilancia Epidemiológica_MSP | Tableau Public. Available at: https://public.tableau.com/profile/vvicentee80#!/vizhome/cronicas_2016/ANUARIO. Accessed October 9, 2018.

  • 24.

    Romero-Sandoval N, Ortiz-Rico C, Sánchez-Pérez HJ, Valdivieso D, Sandoval C, Pástor J, Martín M, 2017. Soil transmitted helminthiasis in indigenous groups. A community cross sectional study in the Amazonian southern border region of Ecuador. BMJ Open 7: e013626.

    • Search Google Scholar
    • Export Citation
  • 25.

    Rubenstein S, 2001. Colonialism, the Shuar federation, and the Ecuadorian state. Environ Plan D 19: 263293.

  • 26.

    Liebert MA, Snodgrass JJ, Madimenos FC, Cepon TJ, Blackwell AD, Sugiyama LS, 2013. Implications of market integration for cardiovascular and metabolic health among an indigenous Amazonian Ecuadorian population. Ann Human Biology 40: 228242.

    • Search Google Scholar
    • Export Citation
  • 27.

    Jokisch BD, McSweeney K, 2011. Assessing the potential of indigenous-run demographic/health surveys: the 2005 Shuar survey, Ecuador. Hum Ecol 39: 683698.

    • Search Google Scholar
    • Export Citation
  • 28.

    Montresor A, Crompton DW, Hall A, Bundy DA, Savioli L; World Health Organization, 1998. Guidelines for the Evaluation of Soil-Transmitted Helminthiasis and Schistosomiasis at Community Level: A Guide for Managers of Control Programmes. Geneva, Switzerland: WHO.

    • Search Google Scholar
    • Export Citation
  • 29.

    Onis M de, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J, 2007. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ 85: 660667.

    • Search Google Scholar
    • Export Citation
  • 30.

    Blackwell AD, Snodgrass JJ, Madimenos FC, Sugiyama LS, 2010. Life history, immune function, and intestinal helminths: trade-offs among immunoglobulin E, C-reactive protein, and growth in an Amazonian population. Am J Hum Biol 22: 836848.

    • Search Google Scholar
    • Export Citation
  • 31.

    Gildner TE, Cepon-Robins TJ, Liebert MA, Urlacher SS, Madimenos FC, Snodgrass JJ, Sugiyama LS, 2016. Regional variation in Ascaris lumbricoides and Trichuris trichiura infections by age cohort and sex: effects of market integration among the indigenous Shuar of Amazonian Ecuador. J Physiol Anthropol 35: 28.

    • Search Google Scholar
    • Export Citation
  • 32.

    Cepon-Robins TJ, Liebert MA, Gildner TE, Urlacher SS, Colehour AM, Snodgrass JJ, Madimenos FC, Sugiyama LS, 2014. Soil-transmitted helminth prevalence and infection intensity among geographically and economically distinct Shuar communities in the Ecuadorian Amazon. J Parasitol 100: 598607.

    • Search Google Scholar
    • Export Citation
  • 33.

    Berendes D et al. 2017. Household sanitation is associated with lower risk of bacterial and protozoal enteric infections, but not viral infections and diarrhoea, in a cohort study in a low-income urban neighbourhood in Vellore, India. Trop Med Int Health 22: 11191129.

    • Search Google Scholar
    • Export Citation
  • 34.

    Vieira AS, Pinto PS, Lilenbaum W, 2018. A systematic review of leptospirosis on wild animals in Latin America. Trop Anim Health Prod 50: 229238.

    • Search Google Scholar
    • Export Citation
  • 35.

    López-Cevallos DF, Chi C, 2010. Health care utilization in Ecuador: a multilevel analysis of socio-economic determinants and inequality issues. Health Policy Plan 25: 209218.

    • Search Google Scholar
    • Export Citation
  • 36.

    Anderson I et al. 2016. Indigenous and tribal peoples’ health (The Lancet-Lowitja Institute Global Collaboration): a population study. Lancet 388: 131157.

    • Search Google Scholar
    • Export Citation
  • 37.

    Kim YJ, Lee H-S, 2010. Increasing incidence of hepatitis A in Korean adults. Intervirology 53: 1014.

  • 38.

    Jayasundara D, Hui BB, Regan DG, Heywood AE, MacIntyre CR, Wood JG, 2019. Modelling the decline and future of hepatitis A transmission in Australia. J Viral Hepat 26: 199207.

    • Search Google Scholar
    • Export Citation
  • 39.

    Jacobsen KH, Wiersma ST, 2010. Hepatitis A virus seroprevalence by age and world region, 1990 and 2005. Vaccine 28: 66536657.

  • 40.

    World Health Organization, 2016. Investing in Water and Sanitation: Increasing Access, Reducing Inequalities: GLAAS 2014 Findings-Highlights for the Region of the Americas, WHO/FWC/WSH/16.41, World Health Organization. Available at: http://apps.who.int/iris/bitstream/10665/204597/1/WHO_FWC_WSH_16.41_eng.pdf?ua=1. Accessed February 28, 2018.

    • Search Google Scholar
    • Export Citation
  • 41.

    Mayorga Perez O, Brinkhof MWG, Egger M, Frösner G, Herzog C, Zwahlen M, 2014. Decreasing risk of hepatitis a infection in León, Nicaragua: evidence from cross-sectional and longitudinal seroepidemiology studies. PLoS One 9: e87643.

    • Search Google Scholar
    • Export Citation
  • 42.

    Chiriboga J et al. 2015. High prevalence of intermediate Leptospira spp. DNA in febrile humans from urban and rural Ecuador. Emerging Infect Dis 21: 21412147.

    • Search Google Scholar
    • Export Citation
  • 43.

    Instituto Nacional de Estadística y Censos, 2011. Pobreza por Necesidades Básicas Insatisfechas. Quito, Ecuador: Instituto Nacional de Estadística y Censos. Available at: http://www.ecuadorencifras.gob.ec/pobreza-por-necesidades-basicas-insatisfechas/. Accessed March 4, 2018.

    • Search Google Scholar
    • Export Citation
  • 44.

    Wilson SE, Deeks SL, Hatchette TF, Crowcroft NS, 2012. The role of seroepidemiology in the comprehensive surveillance of vaccine-preventable diseases. CMAJ 184: E70E76.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 113 113 9
Full Text Views 1277 233 1
PDF Downloads 353 75 0
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save