• 1.

    Vasconcelos PFC, 2003. Febre amarela. Rev Soc Bras Med Trop 36: 275293.

  • 2.

    World Health Organization, 2016. Situation Report—Yellow Fever, 28 October 2016. Geneva, Switzerland: WHO. Available at: http://apps.who.int/iris/bitstream/10665/250661/1/yellowfeversitrep28Oct16-eng.pdf?ua=1. Accessed July 15, 2018.

    • Search Google Scholar
    • Export Citation
  • 3.

    Secretariat of Health Surveillance, Ministry of Health, Brazil, 2017. General Coordination of Epidemiology Development in Services. Health Surveillance Guide: Single Volume, 2nd edition. Brasília, Brazil. Available at: http://portalarquivos.saude.gov.br/images/pdf/2017/outubro/06/Volume-Unico-2017.pdf. Accessed July 20, 2018.

    • Search Google Scholar
    • Export Citation
  • 4.

    Secretariat of Health Surveillance, Ministry of Health, Brazil, 2017. Epidemiological Situation of Yellow Fever. Brasília, Brazil. Available at: http://portalms.saude.gov.br/saude-de-a-z/febre-amarela-sintomas-transmissao-e-prevencao/situacao-epidemiologica-dados. Accessed July 22, 2018.

    • Search Google Scholar
    • Export Citation
  • 5.

    Mascheretti M et al. 2013. Yellow fever: reemerging in the state of Sao Paulo, Brazil, 2009. Rev Saúde Pública 47: 19.

  • 6.

    Secretariat of Health Surveillance, Ministry of Health, Brazil, 2017. Emergency Operations Center in Public Health on Yellow Fever—Report 43. Brasília, Brazil. Available at: http://portalarquivos.saude.gov.br/images/pdf/2017/junho/02/COES-FEBRE-AMARELA---INFORME-43---Atualiza----o-em-31maio2017.pdf. Accessed July 25, 2018.

    • Search Google Scholar
    • Export Citation
  • 7.

    Secretariat of Health Surveillance, Ministry of Health, Brazil, 2018. Emergency Operations Center in Public Health on Yellow Fever—Report 26. Brasília, Brazil. Available at: http://portalarquivos2.saude.gov.br/images/pdf/2018/maio/18/Informe-FA-26.pdf. Accessed July 26, 2018.

    • Search Google Scholar
    • Export Citation
  • 8.

    Monath TP et al. 1980. Yellow fever in the Gambia, 1978–1979: epidemiologic aspects with observations on the occurrence of orungo virus infections. Am J Trop Med Hyg 29: 912928.

    • Search Google Scholar
    • Export Citation
  • 9.

    Vasconcelos PF, Rodrigues SG, Degallier N, Moraes MA, da Rosa JF, da Rosa ES, Mondet B, Barros VL, da Rosa AP, 1997. An epidemic of sylvatic yellow fever in the southeast region of Maranhao State, Brazil, 1993–1994: epidemiologic and entomologic findings. Am J Trop Med Hyg 57: 132137.

    • Search Google Scholar
    • Export Citation
  • 10.

    Domingo C, Patel P, Yillah J, Weidmann M, Méndez JA, Nakouné ER, Niedriga M, 2012. Advanced yellow fever virus genome detection in point-of-care facilities and reference laboratories. J Clin Microbiol 50: 40544060.

    • Search Google Scholar
    • Export Citation
  • 11.

    Bae HG, Nitsche A, Teichmann A, Biel SS, Niedrig M, 2003. Detection of yellow fever virus: a comparison of quantitative real-time PCR and plaque assay. J Virol Methods 110: 185191.

    • Search Google Scholar
    • Export Citation
  • 12.

    Secretary of State for Health of Minas Gerais, 2018. Flowchart for Yellow Fever Care. Minas Gerais, Brazil. Available at: http://www.saude.mg.gov.br/images/documentos/Fluxograma%20de%20Atendimento%20-%20Febre%20Amarela%20V02_03_2018.pdf. Accessed July 29, 2018.

    • Search Google Scholar
    • Export Citation
  • 13.

    Sanchez OS, 2003. O processo de ocupação em áreas de proteção aos mananciais: conflito com a lei e realidade social na Região Metroplitana de São Paulo. Martins RC, Valencio NFLS, eds. Uso e Gestão dos Recursos Hídricos no Brasil. São Carlos, Brazil: RiMa, 293. Available at: http://www.teses.usp.br/teses/disponiveis/18/18139/tde-17112016-120909/publico/Dissert_Sanchez_PatriciaS_corrigido.pdf. Accessed July 20, 2018.

    • Search Google Scholar
    • Export Citation
  • 14.

    Costa ZGA, Romano APM, Elkoury ANM, Flannery B, 2011. Evolução histórica da vigilância epidemiológica e do controle da febre amarela no Brasil. Rev Pan-Amaz Saude 2: 1126.

    • Search Google Scholar
    • Export Citation
  • 15.

    de Almeida MAB, dos Santos E, Cardoso JC, Silva LG, Rabelo RM, Bicca-Marques JC, 2018. Predicting yellow fever through species distribution modeling of virus, vector, and monkeys. EcoHealth 16: 95108.

    • Search Google Scholar
    • Export Citation
  • 16.

    Faria NR et al. 2018. Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science 361: 894899.

  • 17.

    Tuboi SH, Costa ZGA, Vasconcelos PFC, Hatch D, 2007. Clinical and epidemiological characteristics of yellow fever in Brazil: analysis of reported cases 1998–2002. Trans R Soc Trop Med Hyg 101: 169175.

    • Search Google Scholar
    • Export Citation
  • 18.

    Monath TP et al. 2002. Comparative safety and immunogenicity of two yellow fever 17D vaccines (ARILVAX and YF-VAX) in a phase III multicenter, double-blind clinical trial. Am J Trop Med Hyg 66: 533541.

    • Search Google Scholar
    • Export Citation
  • 19.

    Camacho LAB, Freire MS, Leal MLF, de Aguiar SG, do Nascimento JP, Iguchi T, Lozana JA, Farias RHG; Collaborative Group for the Study of Yellow Fever Vaccines, 2004. Immunogenicity of WHO-17D and Brazilian 17DD yellow fever vaccines: a randomized trial. Rev Saúde Pública 38: 671678.

    • Search Google Scholar
    • Export Citation
  • 20.

    Amanna IJ, Slifka MK, 2016. Questions regarding the safety and duration of immunity following live yellow fever vaccination. Expert Rev Vaccines 15: 15191533.

    • Search Google Scholar
    • Export Citation
  • 21.

    Monath TP, Vasconcelos PFC, 2015. Yellow fever. J Clin Virol 64: 160173.

  • 22.

    Monath TP, Gershman M, Staples JE, Barrett ADT, 2013. Yellow fever vaccine. Plotkin SA, Orenstein WA, Offitt PA, eds. Vaccines, 6th edition. Edinburgh, Scotland: Elsevier/Saunders, 870968.

    • Search Google Scholar
    • Export Citation
  • 23.

    Tesh RB, Guzman H, da Rosa AP, Vasconcelos PFC, Dias LB, Bunnel JE, Zhang H, Xiao SY, 2001. Experimental yellow fever virus infection in the golden hamster (Mesocricetus auratus). I. Virologic, biochemical and immunologic studies. J Infect Dis 183: 14311436.

    • Search Google Scholar
    • Export Citation
  • 24.

    Moraes GH, Duarte EF, Duarte EC, 2013. Determinants of mortality from severe dengue in Brazil: a population-based case-control study. Am J Trop Med Hyg 88: 670676.

    • Search Google Scholar
    • Export Citation
  • 25.

    Hanson H, 1929. Observations on the age and sex incidence of deaths and recoveries in the yellow fever epidemic in the department of Lambayeque, Peru, in 1921. Am J Trop Med 9: 233239.

    • Search Google Scholar
    • Export Citation
  • 26.

    Oudart JL, Rey M, 1970. Proteinuria, proteinaemia, and serumtransaminase activity in 23 confirmed cases of yellow fever [article in French]. Bull World Health Organ. 42: 95102.

    • Search Google Scholar
    • Export Citation
  • 27.

    Chen Z et al. 2016. A fatal yellow fever virus infection in China: descriptions and lessons. Emerg Microbes Infect 5: 18.

  • 28.

    Quaresma JAS, Barros VLRS, Pagliari C, Fernandes ER Jr., Andrade HF, Vasconcelos PFC, Duarte MI, 2007. Hepatocyte lesions and cellular immune response in yellow fever infection. Trans R Soc Trop Med Hyg 101: 161168.

    • Search Google Scholar
    • Export Citation
  • 29.

    Hamer DH et al. 2018. Fatal yellow fever in travelers to Brazil, 2018. MMWR Morb Mortal Wkly Rep 67: 340341.

  • 30.

    Johansson MA, Vasconcelos PFC, Staples JE, 2014. The whole iceberg: estimating the incidence of yellow fever virus infection from the number of severe cases. Trans R Soc Trop Med Hyg 108: 482487.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1493 262 5
PDF Downloads 272 100 6
 
 
 
 
 
 
 
 
 
 
 

Yellow Fever: Factors Associated with Death in a Hospital of Reference in Infectious Diseases, São Paulo, Brazil, 2018

Ana Freitas RibeiroInstitute of Infectology Emilio Ribas, São Paulo, Brazil;
Nove de Julho University, São Paulo, Brazil

Search for other papers by Ana Freitas Ribeiro in
Current site
Google Scholar
PubMed
Close
,
Roberta Figueiredo CavalinInstitute of Infectology Emilio Ribas, São Paulo, Brazil;

Search for other papers by Roberta Figueiredo Cavalin in
Current site
Google Scholar
PubMed
Close
,
Jamal Muhamad Abdul Hamid SuleimanInstitute of Infectology Emilio Ribas, São Paulo, Brazil;

Search for other papers by Jamal Muhamad Abdul Hamid Suleiman in
Current site
Google Scholar
PubMed
Close
,
Jessica Alves da CostaInstitute of Infectology Emilio Ribas, São Paulo, Brazil;

Search for other papers by Jessica Alves da Costa in
Current site
Google Scholar
PubMed
Close
,
Marileide Januaria de VasconcelosInstitute of Infectology Emilio Ribas, São Paulo, Brazil;

Search for other papers by Marileide Januaria de Vasconcelos in
Current site
Google Scholar
PubMed
Close
,
Ceila Maria Sant’Ana MálaqueInstitute of Infectology Emilio Ribas, São Paulo, Brazil;

Search for other papers by Ceila Maria Sant’Ana Málaque in
Current site
Google Scholar
PubMed
Close
, and
Jaques SztajnbokInstitute of Infectology Emilio Ribas, São Paulo, Brazil;

Search for other papers by Jaques Sztajnbok in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

Faced with the reemergence of yellow fever (YF) in the metropolitan region of São Paulo, Brazil, we developed a retrospective study to describe the cases of YF attended at the Institute of Infectology Emilio Ribas from January to March 2018 and analyze the factors associated with death, from the information obtained in the hospital epidemiological investigation. A total of 72 cases of sylvatic YF were confirmed, with 21 deaths (29.2% lethality rate). Cases were concentrated in males (80.6%) and in the age group of 30 to 59 years (56.9%). Two logistic regression models were performed, with continuous variables adjusted for the time between onset of symptoms and hospitalization. The first model indicated age (odds ratiosadjusted [ORadj]: 1.038; CI 95%: 1.008–1.212), aspartate aminotransferase (AST) (ORadj: 1.038; CI 95%: 1.005–1.072), and creatinine (ORadj: 2.343; CI 95%: 1.205–4.553) were independent factors associated with mortality. The second model indicated age (ORadj: 1.136; CI 95%: 1.013–1.275), alanine aminotransferase (ALT) (ORadj: 1.118; CI 95%: 1.018–1.228), and creatinine (ORadj: 2.835; CI 95%: 1.352–5,941). The risk of death in the model with continuous variables was calculated from the increase of 1 year (age), 1 mg/dL (creatinine), and 100 U/L for AST and ALT. Another logistic regression analysis with dichotomous variables indicated AST > 1,841 IU/L (ORadj: 12.92; CI 95%: 1.50–111.37) and creatinine > 1.2 mg/dL (ORadj: 81.47; CI 95%: 11.33–585.71) as independent factors associated with death. These results may contribute to the appropriate clinical management of patients with YF in health-care services and improve the response to outbreaks and public health emergencies.

Author Notes

Address correspondence to Ana Freitas Ribeiro, Institute of Infectology Emilio Ribas, 165 Avenida Doutor Arnaldo, São Paulo 01246-900, Brazil. E-mail: anafribeiro@uol.com.br

Authors’ addresses: Ana Freitas Ribeiro, Roberta Figueiredo Cavalin, Jamal Muhamad Abdul Hamid Suleiman, Jessica Alves da Costa, Marileide Januaria de Vasconcelos, Ceila Maria Sant’Ana Málaque, and Jaques Sztajnbok, Institute of Infectology Emilio Ribas, São Paulo, Brazil, E-mails: anafribeiro@uol.com.br, roberta.cavalin@usp.br, jamal.suleiman@emilioribas.sp.gov.br, jessicacosta20@hotmail.com, marileide.vasconcelos@emilioribas.sp.gov.br, cmalaque@uol.com.br, and jaques.sztajnbok@gmail.com.

Save