Utilization of Small RNA Genes to Distinguish Vibrio cholerae Biotypes via Multiplex Polymerase Chain Reaction

Siti Aminah Ahmed Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia;

Search for other papers by Siti Aminah Ahmed in
Current site
Google Scholar
PubMed
Close
,
Carsten A. Raabe Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany;
Brandenburg Medical School (Medizinische Hochschule Brandenburg [MHB]), Neuruppin, Germany;
Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany;

Search for other papers by Carsten A. Raabe in
Current site
Google Scholar
PubMed
Close
,
Hong Leong Cheah Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia;

Search for other papers by Hong Leong Cheah in
Current site
Google Scholar
PubMed
Close
,
Chee Hock Hoe Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia;
Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kelantan, Malaysia;

Search for other papers by Chee Hock Hoe in
Current site
Google Scholar
PubMed
Close
,
Timofey S. Rozhdestvensky Medical Faculty, Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Münster, Germany

Search for other papers by Timofey S. Rozhdestvensky in
Current site
Google Scholar
PubMed
Close
, and
Thean Hock Tang Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia;

Search for other papers by Thean Hock Tang in
Current site
Google Scholar
PubMed
Close
Restricted access

The diarrheal disease “cholera” is caused by Vibrio cholerae, and is primarily confined to endemic regions, mostly in Africa and Asia. It is punctuated by outbreaks and creates severe challenges to public health. The disease-causing strains are most-often members of serogroups O1 and O139. PCR-based methods allow rapid diagnosis of these pathogens, including the identification of their biotypes. However, this necessitates the selection of specific target sequences to differentiate even the closely related biotypes of V. cholerae. Oligonucleotides for selective amplification of small RNA (sRNA) genes that are specific to these V. cholerae subtypes were designed. The resulting multiplex PCR assay was validated using V. cholerae cultures (i.e., 19 V. cholerae and 22 non–V. cholerae isolates) and spiked stool samples. The validation using V. cholerae cultures and spiked stool suspensions revealed detection limits of 10–100 pg DNA per reaction and 1.5 cells/mL suspension, respectively. The multiplex PCR assay that targets sRNA genes for amplification enables the sensitive and specific detection, as well as the differentiation of V. cholerae—O1 classical, O1 El Tor, and O139 biotypes. Most importantly, the assay enables fast and cheaper diagnosis compared with classic culture-based methods.

    • Supplemental Materials (PDF 247 KB)

Author Notes

Address correspondence to Thean Hock Tang, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia. E-mail: tangth@usm.my

Authors’ addresses: Siti Aminah Ahmed, Hong Leong Cheah, and Thean Hock Tang, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia, E-mails: asiti2000@usm.my, cheahhl814@gmail.com, and tangth@usm.my. Carsten A. Raabe, Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany, Brandenburg Medical School (MHB), Neuruppin, Germany, and Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), Institute of Medical Biochemistry, University of Münster, Münster, Germany, E-mail: raabec@uni-muenster.de. Chee Hock Hoe, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia, and Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kelantan, Malaysia, E-mail: hcheehock@umk.edu.my. Timofey S. Rozhdestvensky, Medical Faculty, Transgenic Animal and Genetic Engineering Models (TRAM), University of Muenster, Münster, Germany, E-mail: rozhdest@uni-muenster.de.

  • 1.

    Ali M, Nelson AR, Lopez AL, Sack DA, 2015. Updated global burden of cholera in endemic countries. PLoS Negl Trop Dis 9: e0003832.

  • 2.

    World Health Organization, 2016. Cholera annual report 2015. Wkly Epidemiol Rec 91: 433440.

  • 3.

    Okpor MD, 2012. Using fuzzy classifier for cholera analysis. Intern J Sci Res 3: 314317.

  • 4.

    Nelson EJ, Harris JB, Morris JG Jr., Calderrwood SB, Camilli A, 2009. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol 7: 693702.

  • 5.

    Nair GB, 2002. Guidelines for Drinking-Water Quality. Available at: http://www.who.int/water_sanitation_health/dwq/admicrob6.pdf. Accessed March 26, 2018.

    • PubMed
    • Export Citation
  • 6.

    Islam A et al. 2013. Indigenous Vibrio cholerae strains from a non-endemic region are pathogenic. Open Biol 3: 120181.

  • 7.

    Faruque SM, Mekalanos JJ, 2012. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence 3: 556565.

  • 8.

    Nair GB, Safa A, Bhuiyan NA, Nusrin S, Murphy D, Nicol C, Valcanis M, Iddings S, Kubuabola I, Vally H, 2006. Isolation of Vibrio cholerae O1 strains similar to pre-seventh pandemic El Tor strains during an outbreak of gastrointestinal disease in an island resort in Fiji. J Med Microbiol 55: 15591562.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Chin C-S et al. 2011. The origin of the Haitian cholera outbreak strain. N Engl J Med 364: 3342.

  • 10.

    Minukhin VV, Kovalenko NI, 2014. Cholera: Methodical Instructions on the Subject Microbiology, Virology and Immunology for the II and III Year English Media Students of Medical and Dentistry Faculties. Kharkiv: Kharkiv National Medical University, 20.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Siddique AK, Cash R, 2014. Cholera outbreaks in the classical biotype era. Curr Top Microbiol Immunol 379: 116.

  • 12.

    Mukhopadhyay AK, Takeda Y, Balakrish NG, 2014. Cholera outbreaks in the El Tor biotype era and the impact of the new El Tor variants. Curr Top Microbiol Immunol 379: 1747.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Vicente ACP, 2011. On the emergence of atypical Vibrio cholerae O1 El Tor & cholera epidemic. Indian J Med Res 133: 366367.

  • 14.

    Son MS, Megli CJ, Kovacikova G, Qadri F, Taylor RK, 2011. Characterization of Vibrio cholerae O1 El Tor biotype variant clinical isolates from Bangladesh and Haiti, including a molecular genetic analysis of virulence genes. J Clin Microbiol 49: 37393749.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Kim EJ et al. 2014. Molecular insights into the evolutionary pathway of Vibrio cholerae O1 atypical El Tor variants. PLoS Pathog 10: e1004384.

  • 16.

    Udden SMN, Zahid MSH, Biswas K, Ahmad QS, Cravioto A, Nair GB, Mekalanos JJ, Faruque SM, 2008. Acquisition of classical CTX prophage from Vibrio cholerae O141 by El Tor strains aided by lytic phages and chitin-induced competence. Proc Natl Acad Sci USA 105: 1195111956.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Keddy KH, Sooka A, Parsons MB, Njanpop-Lafourcade B-M, Fitchet K, Smith AM, 2013. Diagnosis of Vibrio cholerae O1 infection in Africa. J Infect Dis 208: S23S31.

  • 18.

    Griffth DC, Kelly-Hope LA, Miller MA, 2006. Review of reported cholera outbreaks worldwide, 1995–2005. Am J Trop Med Hyg 75: 973977.

  • 19.

    Loharikar A et al. 2013. A national cholera epidemic with high case fatality rates—Kenya 2009. J Infect Dis 208: S69S77.

  • 20.

    Alam A et al. 2010. Diagnostic limitations to accurate diagnosis of cholera. J Clin Microbiol 48: 39183922.

  • 21.

    Greenhill A, Rosewell A, Kas M, Manning L, Latorre L, Siba P, Horwood P, 2012. Improved laboratory capacity is required to respond better to future cholera outbreaks in Papua New Guinea. Western Pac Surveill Response J 3: 3032.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    George CM et al. 2014. Evaluation of enrichment method for the detection of Vibrio cholerae O1 using a rapid dipstick test in Bangladesh. Trop Med Int Health 19: 301307.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Ontweka LN et al. 2016. Cholera rapid test with enrichment step has diagnostic performance equivalent to culture. PLoS One 11: e0168257.

  • 24.

    Yamasaki E, Sakamoto R, Matsumoto T, Morimatsu F, Kurazono T, Hiroi T, Nair GB, Kurazono H, 2013. Development of an immunochromatographic test strip for detection of cholera toxin. Biomed Res Int 2013: 679038.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Zhu K, Dietrich R, Didier A, Doyscher D, Märtlbauer E, 2014. Recent developments in antibody-based assays for the detection of bacterial toxins. Toxins 6: 13251348.

  • 26.

    Barzamini B, Moghbeli M, Soleimani NA, 2014. Vibrio cholerae detection in water and wastewater by polymerase chain reaction assay. Int J Enteric Pathog 2: e20997.

  • 27.

    Kim H-J, Ryu J-O, Lee S-Y, Kim E-S, Kim H-Y, 2015. Multiplex PCR for detection of the Vibrio genus and five pathogenic Vibrio species with primer sets designed using comparative genomics. BMC Microbiol 15: 239.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Yamazaki W, Seto K, Taguchi M, Ishibashi M, Inoue K, 2008. Sensitive and rapid detection of cholera toxin-producing Vibrio cholerae using a loop-mediated isothermal amplification. BMC Microbiol 8: 94.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Chua AL, Elina HT, Lim BH, Yean CY, Ravichandran M, Lalitha P, 2011. Development of a dry reagent-based triplex PCR for the detection of toxigenic and non-toxigenic Vibrio cholerae. J Med Microbiol 60: 481485.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Mehrabadi JF, Morsali P, Nejad HR, Imani Fooladi AA, 2012. Detection of toxigenic Vibrio cholerae with new multiplex PCR. J Infect Public Health 5: 263267.

  • 31.

    Raychoudhuri A, Mukhopadhyay AK, Ramamurthy T, Nandy RK, Takeda Y, Nair GB, 2008. Biotyping of Vibrio cholerae O1: time to redefine the scheme. Indian J Med Res 128: 695698.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Barzelighi HM, Bakhshi B, Boustanshenas M, 2016. Genetic determinants differences between Vibrio cholerae biotypes. Infect Epidemiol Med 2: 2630.

  • 33.

    Ahmed SA, Sandai DA, Musa S, Hoe CH, Riadzi M, Lau KL, Tang TH, 2012. Rapid diagnosis of leptospirosis by multiplex PCR. Malays J Med Sci 19: 916.

  • 34.

    Tang TH, Ahmed SA, Musa M, Zainuddin ZF, 2013. Rapid detection of Mycobacterium tuberculosis in clinical samples by multiplex polymerase chain reaction (mPCR). World J Microbiol Biotechnol 29: 23892395.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Nithya R, Ahmed SA, Hoe CH, Gopinath SC, Citartan M, Chinni SV, Lee LP, Rozhdestvensky TS, Tang TH, 2015. Non-protein coding RNA genes as the novel diagnostic markers for the discrimination of Salmonella species using PCR. PLoS One 10: e0118668.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Tokunaga A, Yamaguchi H, Morita M, Arakawa E, Izumiya H, Watanabe H, Osawa R, 2010. Novel PCR-based genotyping method, using genomic variability between repetitive sequences of toxigenic Vibrio cholerae O1 El Tor and O139. Mol Cell Probes 24: 99103.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Li W, Ying X, Lu Q, Chen L, 2012. Predicting sRNAs and their targets in bacteria. Genomics Proteomics Bioinformatics 10: 276284.

  • 38.

    Tang TH, Bachellerie JP, Rozhdestvensky T, Bortolin ML, Huber H, Drungowski M, Elge T, Brosius J, Hüttenhofer A, 2002. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc Natl Acad Sci USA 99: 75367541.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Vogel J, Bartels V, Tang TH, Churakov G, Slagter-Jäger JG, Hüttenhofer A, Wagner EGH, 2003. RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucl Acids Res 31: 64356443.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Chinni SV, Raabe CA, Zakaria R, Randau G, Hoe CH, Zemann A, Brosius J, Tang TH, Rozhdestvensky TS, 2010. Experimental identification and characterization of 97 novel npcRNA candidates in Salmonella enterica serovar Typhi. Nucl Acids Res 38: 58935908.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Krӧger C et al. 2012. The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium. Proc Natl Acad Sci USA 109: E1277E1286.

  • 42.

    Raabe CA et al. 2010. A global view of the nonprotein-coding transcriptome in Plasmodium falciparum. Nucleic Acids Res 38: 608617.

  • 43.

    Chen XS, Rozhdestvensky TS, Collins LJ, Schmitz J, Penny D, 2007. Combined experimental and computational approach to identify non-protein-coding RNAs in the deep-branching eukayote Giardia intestinalis. Nucleic Acids Res 35: 46194628.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Yuan G, Klämbt C, Bachellerie JP, Brosius J, Hüttenhofer A, 2003. RNomics in Drosophila melanogaster: identification of 66 candidates for novel non-messenger RNAs. Nucleic Acids Res 31: 24952507.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Marker C, Zemann A, Terhӧrst T, Kiefmann M, Kastenmayer JP, Green P, Bachellerie JP, Brosius J, Hüttenhofer A, 2002. Experimental RNomics: identification of 140 candidates for small non-messenger RNAs in the plant Arabidopsis thaliana. Curr Biol 12: 20022013.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Hüttenhofer A, Kiefmann M, Meier-Ewert S, O’Brien J, Lehrach H, Bachellerie JP, Brosius J, 2001. RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse. EMBO J 20: 29432953.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Hoe CH, Raabe CA, Rozhdestvensky TS, Tang TH, 2013. Bacterial sRNAs: regulation in stress. Int J Med Microbiol 303: 217229.

  • 48.

    Cheah HL, Raabe CA, Lee LP, Rozhdestvensky TS, Citartan M, Ahmed SA, Tang TH, 2018. Bacterial regulatory RNAs: complexity, function, and putative drug targeting. Crit Rev Biochem Mol Biol 53: 335355.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Papenfort K, Fӧrstner KU, Cong J-P, Sharma CM, Bassler BL, 2015. Differential RNA-seq of Vibrio cholerae identifies the VqmR small RNA as a regulator of biofilm formation. Proc Natl Acad Sci USA 1073: E766E775.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Silveira AC, Robertson KL, Lin B, Wang Z, Vora GJ, Vasconcelos AT, Thompson FL, 2010. Identification of non-coding RNAs in environmental vibrios. Microbiology 156: 24522458.

  • 51.

    Bardill JP, Hammer BK, 2012. Non-coding sRNAs regulate virulence in the bacterial pathogen Vibrio cholerae. RNA Biol 9: 392401.

  • 52.

    Raabe CA, Hoe CH, Randau G, Brosius J, Tang TH, Rozhdestvensky TS, 2011. The rocks and shallows of deep RNA sequencing: examples in the Vibrio cholerae RNome. RNA 17: 13571366.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ, 1990. Basic local alignment search tool. J Mol Biol 215: 403410.

  • 54.

    Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL, 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13: 134.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Dalsgaard A, Serichantalergs O, Forslund A, Lin W, Mekalanos J, Mintz E, Shimada T, Wells JG, 2001. Clinical and environmental isolates of Vibrio cholerae serogroup O141 carry the CTX phage and the genes encoding the toxin-coregulated pili. J Clin Microbiol 39: 40864092.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Onifade TM, Hutchinson R, Van Zile K, Bodager D, Baker R, Blackmore C, 2011. Toxin producing Vibrio cholerae O75 outbreak, United States, March to April 2011. Euro Surveill 16: 19870.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Tobin-D’Angelo M et al. 2008. Severe diarrhea caused by cholera toxin-producing Vibrio cholerae serogroup O75 infections acquired in the southeastern United States. Clin Infect Dis 47: 10351040.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Schrader C, Schielke A, Ellerbroek L, Johne R, 2012. PCR inhibitors—occurrence, properties and removal. J Appl Microbiol 113: 10141026.

  • 59.

    Monteiro L, Bonnemaison D, Vekris A, Petry KG, Bonnet J, Vidal R, Cabrita J, Mégraud F, 1997. Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. J Clin Microbiol 35: 995998.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Iijima Y, Asako NT, Aihara M, Hayashi K, 2004. Improvement in the detection rate of diarrhoeagenic bacteria in human stool specimens by a rapid real-time PCR assay. J Med Microbiol 53: 617622.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Ojha SC, Yean Yean C, Ismail A, Singh KK, 2013. A pentaplex PCR assay for the detection and differentiation of Shigella species. Biomed Res Int 2013: 412370.

  • 62.

    Liu Y et al. 2015. A foodborne outbreak of gastroenteritis caused by Vibrio parahaemolyticus and norovirus through non-seafood vehicle. PLoS One 10: e0137848.

  • 63.

    Teh CSJ, Suhaili Z, Lim KT, Khamaruddin MA, Yahya F, Sajili MH, Yeo CC, Thong KL, 2012. Outbreak-associated Vibrio cholerae genotypes with identical pulsotypes, Malaysia, 2009. Emerg Infect Dis 18: 11771179.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Iwamoto M, Ayers T, Mahon BE, Swerdlow DL, 2010. Epidemiology of seafood-associated infections in the United States. Clin Microbiol Rev 23: 399411.

Past two years Past Year Past 30 Days
Abstract Views 240 177 6
Full Text Views 499 7 0
PDF Downloads 173 6 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save