• 1.

    Lanciotti RS et al. 1999. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286: 23332337.

    • Search Google Scholar
    • Export Citation
  • 2.

    Fang Y, Reisen WK, 2006. Previous infection with West Nile or St. Louis encephalitis viruses provides cross protection during reinfection in house finches. Am J Trop Med Hyg 75: 480485.

    • Search Google Scholar
    • Export Citation
  • 3.

    Smithburn KC, Hughes TP, Burke AW, Paul JH, 1940. A neurotropic virus isolated from the blood of a native of Uganda. Am J Trop Med Hyg 20: 471492.

    • Search Google Scholar
    • Export Citation
  • 4.

    Chancey C, Grinev A, Volkova E, Rios M, 2015. The global ecology and epidemiology of West Nile virus. Biomed Res Int 2015: 376230. doi: 10.1155/2015/376230.

    • Search Google Scholar
    • Export Citation
  • 5.

    Campbell GL, Marfin AA, Lanciotti RS, Gubler DJ, 2002. West Nile virus. Lancet Infect Dis 2: 519529.

  • 6.

    Morales MA et al. 2006. West Nile virus isolation from equines in Argentina, 2006. Emerg Infect Dis 12: 15591561.

  • 7.

    Diaz LA et al. 2008. West Nile virus in birds, Argentina. Emerg Infect Dis 14: 689691.

  • 8.

    Lumsden LL, 1958. St. Louis encephalitis in 1933; observations on epidemiological features. Public Health Rep 73: 340353.

  • 9.

    Durlach RA, Astarloa L, 1985. Saint Louis meningoencephalitis. Medicina (B Aires) 45: 467468.

  • 10.

    Spinsanti L et al. 2003. St. Louis encephalitis in Argentina: the first case reported in the last seventeen years. Emerg Infect Dis 9: 271273.

  • 11.

    Spinsanti LI et al. 2008. Human outbreak of St. Louis encephalitis detected in Argentina, 2005. J Clin Virol 42: 2733.

  • 12.

    Seijo A et al. 2011. Outbreak of St. Louis encephalitis in the metropolitan Buenos Aires area [in Spanish]. Medicina (B Aires) 71: 211217.

  • 13.

    Diaz LA, Flores FS, Quaglia A, Contigiani MS, 2012. Intertwined arbovirus transmission activity: reassessing the transmission cycle paradigm. Front Physiol 3: 493.

    • Search Google Scholar
    • Export Citation
  • 14.

    Mitchell CJ, Francy DB, Monath TP, 1980. Arthropod vectors. Monath TP, ed. St. Louis Encephalitis. Washington, DC: American Public Health Association, 313–379.

  • 15.

    Flores FS, Nava S, Batallán G, Tauro LB, Contigiani MS, Diaz LA, Guglielmone AA, 2014. Ticks (Acari: Ixodidae) on wild birds in north-central Argentina. Ticks Tick Borne Dis 5: 715721.

    • Search Google Scholar
    • Export Citation
  • 16.

    Guglielmone AA, Mangold AJ, García MD, 1991. The life cycle of Amblyomma parvum Aragao, 1908 (Acari: Ixodidae) under laboratory conditions. Exp Appl Acarol 13: 129136.

    • Search Google Scholar
    • Export Citation
  • 17.

    Mitchell CJ, Monath TP, Sabattini MS, Cropp CB, Daffner JF, Calisher CH, Jakob WL, Christensen HA, 1985. Arbovirus investigations in Argentina, 1977–1980. II. Arthropod collections and virus isolations from Argentine mosquitoes. Am J Trop Med Hyg 34: 945955.

    • Search Google Scholar
    • Export Citation
  • 18.

    Hurlbut HS, 1956. West Nile virus infection in arthropods. Am J Trop Med Hyg 5: 7685.

  • 19.

    Hurlbut HS, Rizk F, Taylor RM, Work TH, 1956. A study of the ecology of West Nile virus in Egypt. Am J Trop Med Hyg 5: 579620.

  • 20.

    Blattner RJ, Heys FM; Technical Assistance of Margaret B. McDonald, 1944. Blood-sucking vectors of encephalitis: experimental transmission of St. Louis encephalitis (Hubbard strain) to white Swiss mice by the American dog tick, Dermacentor variabilis say. J Exp Med 79: 439454.

    • Search Google Scholar
    • Export Citation
  • 21.

    Abbassy MM, Osman M, Marzouk AS, 1993. West Nile virus (Flaviviridae: Flavivirus) in experimentally infected argas ticks (Acari: Argasidae). Am J Trop Med Hyg 48: 726737.

    • Search Google Scholar
    • Export Citation
  • 22.

    Anderson JF, Main AJ, Andreadis TG, Wikel SK, Vossbrinck CR, 2003. Transstadial transfer of West Nile virus by three species of ixodid ticks (Acari: Ixodidae). J Med Entomol 40: 528533.

    • Search Google Scholar
    • Export Citation
  • 23.

    Lawrie CH, Uzcategui NY, Gould EA, Nuttall PA, 2004. Ixodid and argasid tick species and West Nile virus. Emerg Infect Dis 10: 653657.

  • 24.

    Formosinho P, Santos-Silva MM, 2006. Experimental infection of Hyalomma marginatum ticks with West Nile virus. Acta Virol 50: 175180.

  • 25.

    Reisen WK, Brault AC, Martinez VM, Fang Y, Simmons K, Garcia S, Omi-Olsen E, Lane RS, 2007. Ability of transstadially infected Ixodes pacificus (Acari: Ixodidae) to transmit West Nile virus to song sparrows or western fence lizards. J Med Entomol 44: 320327.

    • Search Google Scholar
    • Export Citation
  • 26.

    Kokonova MS, Borisevich SV, Grabarev PA, Bondarev VP, 2013. Experimental assessment of the possible significance of argasid ticks in preserving the natural foci of West Nile virus infection [in Russian]. Med Parazitol (Mosk) 2: 3335.

    • Search Google Scholar
    • Export Citation
  • 27.

    Sonenshine DE, 1991. Biology of Ticks, 1st edition. New York, NY: Oxford University Press.

  • 28.

    Labuda M, Nuttall PA, 2004. Tick-borne viruses. Parasitology 129: S221S245.

  • 29.

    Steele GM, Nuttall PA, 1989. Difference in vector competence of two species of sympatric ticks, Amblyomma variegatum and Rhipicephalus appendiculatus for Dugbe virus (Nairovirus: Bunyaviridae). Virus Res 14: 7384.

    • Search Google Scholar
    • Export Citation
  • 30.

    Davies CR, Jones LD, Nuttall PA, 1986. Experimental studies on the transmission cycle of Thogoto virus, a candidate orthomyxovirus, in Rhipicephalus appendiculatus ticks. Am J Trop Med Hyg 35: 12561262.

    • Search Google Scholar
    • Export Citation
  • 31.

    Balashov JC, 1998. Ixodid Ticks—Parasites and Vectors of Diseases. Sankt-Peterburg, Russia: Nauka.

  • 32.

    Rehacek J, 1965. Development of animal viruses and rickettsiae in ticks and mites. Annu Rev Entomol 10: 124.

  • 33.

    Chernesky MA, Mclean DM, 1969. Localization of Powassan virus in Dermacentor andersoni ticks by immunofluorescence. Can J Microbiol 15: 13991408.

    • Search Google Scholar
    • Export Citation
  • 34.

    Booth TF, Davies CR, Jones LD, Staunton D, Nuttall PA, 1989. Anatomical basis of Thogoto virus infection in BHK cell culture and in the ixodid tick vector, Rhipicephalus appendiculatus. J Gen Virol 70: 10931104.

    • Search Google Scholar
    • Export Citation
  • 35.

    Booth TF, Steele GM, Marriott AC, Nuttall PA, 1991. Dissemination, replication, and trans-stadial persistence of Dugbe virus (Nairovirus, Bunyaviridae) in the tick vector Amblyomma variegatum. Am J Trop Med Hyg 45: 146157.

    • Search Google Scholar
    • Export Citation
  • 36.

    Kaufman WR, Nuttall PA, 2004. Rhipicephalus appendiculatus (Acari: Ixodidae): dynamics of Thogoto virus infection in female ticks during feeding on Guinea pigs. Exp Parasitol 104: 2025.

    • Search Google Scholar
    • Export Citation
  • 37.

    Nava S, Mangold AJ, Guglielmone AA, 2009. Seasonal distribution of larvae and nymphs of Amblyomma tigrinum Koch, 1844 (Acari: Ixodidae). Vet Parasitol 166: 340342.

    • Search Google Scholar
    • Export Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Vector Competence for West Nile Virus and St. Louis Encephalitis Virus (Flavivirus) of Three Tick Species of the Genus Amblyomma (Acari: Ixodidae)

View More View Less
  • 1 Instituto de Virología “Dr. J. M. Vanella”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba, Argentina;
  • | 2 Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz, Curitiba, Brazil;
  • | 3 Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, CONICET, Rafaela, Argentina;
  • | 4 Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil;
  • | 5 Instituto de Investigaciones Biológicas y Tecnológicas, CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
Restricted access

Many species of Amblyomma ticks are commonly found infesting wild birds in South America, where birds are important hosts for several arboviruses, such as West Nile virus (WNV) and St. Louis encephalitis virus (SLEV). In this study, WNV and SLEV transmission experiments were performed to evaluate the vector competence of three South American tick species: Amblyomma ovale, Amblyomma tigrinum, and Amblyomma tonelliae. Larval and nymphal ticks of each species were allowed to feed on chicks needle inoculated with WNV or SLEV. All three Amblyomma species acquired either WNV or SLEV through larval feeding, with infection rates varying from 3.1% to 100% for WNV and from 0% to 35.7% for SLEV in engorged larvae. Transstadial perpetuation of the viruses was demonstrated in the molted nymphs, with WNV infection rates varying from 0% to 33.7% and SLEV infection rates from 13.6% to 23.8%. Although nymphal ticks also acquired either virus through feeding, transstadial perpetuation to adult ticks was lower, with virus detection in only 3.2% of A. tigrinum and 11.5% of A. tonelliae unfed adult ticks. On the other hand, vector competence for nymphs (exposed to WNV or SLEV through larval feeding) and adult ticks (exposed to WNV or SLEV through larval or nymphal feeding) was null in all cases. Although our results indicate transstadial perpetuation of WNV or SLEV in the three tick species, the ticks were not competent to transmit these agents to susceptible hosts. The role of these ixodid tick species in the epidemiology of WNV and SLEV might be insignificant, even though at least A. ovale and A. tigrinum are frequent bird ticks in Latin America, so the virus could survive winter in the fed larvae. However, future studies are required to determine the implications that this could have, as well as analyze the vector competence of other common bird tick species in South America.

Author Notes

Address correspondence to Adrián Diaz, Arbovirus Laboratory, School of Medicine, Institute of Virology “J. M. Vanella”, National University of Córdoba, Enfermera Gordillo Gómez s/n, CPX5016GCA, Córdoba 5016, Argentina. E-mail: adrian.diaz@conicet.gov.ar

Financial support: This work received financial support from Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP/CONICET Project no. 2013/50605-6), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET/FAPESP Project no. 5112/13), and Ministerio de Ciencia y Tecnología de Argentina (PICT 2013-1779). Experimental vector competence assays were carried out during an internship by FSF funded by Ministerio de Educación Argentina (MERCOSUR Research project) and Programa CAPES PPCP-Mercosul Project no. 009/2011.

Authors’ addresses: Fernando S. Flores and Adrián Diaz, Laboratorio de Arbovirus, Facultad de Ciencias Médicas, Instituto de Virología “Dr. J. M. Vanella”, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba, Argentina, E-mails: fernandosflores@gmail.com and adrian.diaz@conicet.gov.ar. Camila Zanluca and Claudia N. Duarte dos Santos, Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz, Curitiba, Brazil, E-mails: camilazanluca@fiocruz.br and clsantos@fiocruz.br. Alberto A. Guglielmone, Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Argentina, E-mail: guglielmone.alberto@inta.gob.ar. Marcelo B. Labruna, Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil, E-mail: labruna@usp.br.

Save