OāNeill J, 2014. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. The Review on Antimicrobial Resistance. Available at: https://amr-review.org/Publications.html. Accessed September 28, 2018.
World Health Organization, 2017. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Available at: http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/. Accessed September 28, 2018.
Liu L, Oza S, Hogan D, Perin J, Rudan I, Lawn JE, Cousens S, Mathers C, Black RE, 2015. Global, regional, and national causes of child mortality in 2000ā13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet 385: 430ā440.
Laxminarayan R, Matsoso P, Pant S, Brower C, Rottingen JA, Klugman K, Davies S, 2016. Access to effective antimicrobials: a worldwide challenge. Lancet 387: 168ā175.
Investigators of the Delhi Neonatal Infection Study (DeNIS) Collaboration, 2016. Characterisation and antimicrobial resistance of sepsis pathogens in neonates born in tertiary care centres in Delhi, India: a cohort study. Lancet Glob Health 4: e752āe760.
Kayange N, Kamugisha E, Mwizamholya DL, Jeremiah S, Mshana SE, 2010. Predictors of positive blood culture and deaths among neonates with suspected neonatal sepsis in a tertiary hospital, Mwanza-Tanzania. BMC Pediatr 10: 39.
Fox-Lewis A et al. 2018. Antimicrobial resistance in invasive bacterial infections in hospitalized children, Cambodia, 2007ā2016. Emerg Infect Dis 24: 841ā851.
Bailey JK, Pinyon JL, Anantham S, Hall RM, 2010. Commensal Escherichia coli of healthy humans: a reservoir for antibiotic-resistance determinants. J Med Microbiol 59: 1331ā1339.
Klemm EJ et al. 2018. Emergence of an extensively drug-resistant Salmonella enterica serovar typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins. MBio 9: e00105-18.
Turner P, Pol S, Soeng S, Sar P, Neou L, Chea P, Day NP, Cooper BS, Turner C, 2016. High prevalence of antimicrobial-resistant gram-negative colonization in hospitalized Cambodian infants. Pediatr Infect Dis J 35: 856ā861.
Das P, Singh AK, Pal T, Dasgupta S, Ramamurthy T, Basu S, 2011. Colonization of the gut with Gram-negative bacilli, its association with neonatal sepsis and its clinical relevance in a developing country. J Med Microbiol 60: 1651ā1660.
Richard SA, Barrett LJ, Guerrant RL, Checkley W & Miller MA MAL-ED Network Investigators, 2014. Disease surveillance methods used in the 8-site MAL-ED cohort study. Clin Infect Dis 59: S220āS224.
Houpt E et al. MAL-ED Network Investigators, 2014. Microbiologic methods utilized in the MAL-ED cohort study. Clin Infect Dis 59: S225āS232.
Mduma ER et al. 2014. The etiology, risk factors, and interactions of enteric infections and malnutrition and the consequences for child health and development study (MAL-ED): description of the Tanzanian site. Clin Infect Dis 59: S325āS330.
Clinical and Laboratory Standards Institute (CLSI), 2016. Performance Standards for Antimicrobial Susceptbility Testing. Twenty-Sixth Informational Supplement. M100-S26. Wayne, PA: CLSI.
Seidman JC, Coles CL, Silbergeld EK, Levens J, Mkocha H, Johnson LB, Munoz B, West SK, 2014. Increased carriage of macrolide-resistant fecal E. coli following mass distribution of azithromycin for trachoma control. Int J Epidemiol 43: 1105ā1113.
Roschanski N, Fischer J, Guerra B, Roesler U, 2014. Development of a multiplex real-time PCR for the rapid detection of the predominant beta-lactamase genes CTX-M, SHV, TEM and CIT-type AmpCs in Enterobacteriaceae. PLoS One 9: e100956.
Magiorakos AP et al. 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18: 268ā281.
Tadesse BT, Ashley EA, Ongarello S, Havumaki J, Wijegoonewardena M, Gonzalez IJ, Dittrich S, 2017. Antimicrobial resistance in Africa: a systematic review. BMC Infect Dis 17: 616.
Mathur S, Fuchs A, Bielicki J, Van Den Anker J, Sharland M, 2018. Antibiotic use for community-acquired pneumonia in neonates and children: WHO evidence review. Paediatr Int Child Health 38(Supp 1): S66āS75.
Backhed F et al. 2015. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17: 690ā703.
Rogawski ET et al. 2017. Use of antibiotics in children younger than two years in eight countries: a prospective cohort study. Bull World Health Organ 95: 49ā61.
Chen S, Larsson M, Robinson RC, Chen SL, 2017. Direct and convenient measurement of plasmid stability in lab and clinical isolates of E. coli. Sci Rep 7: 4788.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 114 | 114 | 46 |
Full Text Views | 1329 | 184 | 0 |
PDF Downloads | 301 | 58 | 0 |
Antibiotic-resistant bacterial infections are a major public health problem, and children in low-resource settings represent a particularly high-risk group. Few data are available on the dynamics of and risk factors for gastrointestinal carriage of antibiotic-resistant bacteria in these vulnerable populations. In this study, we described the antibiotic susceptibility profiles of Escherichia coli isolated from stool specimens collected from children aged 6 to 60 months enrolled in a birth cohort study in Haydom, Tanzania. We estimated the association between sociodemographic risk factors, child illnesses, and antibiotic exposure and E. coli drug resistance. Carriage of antibiotic-resistant E. coli was common starting early in life and did not clearly increase with age. The majority of isolates were resistant to ampicillin (749/837; 89.5%), cefazolin (742/837; 88.6%), and cotrimoxazole (721/837; 86.1%). Resistance to amoxicillin/clavulanate (361/836; 43.2%), ampicillin/sulbactam (178/819; 21.7%), nalidixic acid (131/831; 15.8%), and azithromycin (115/837; 13.7%) was also seen. Only 1.8% (15/837) of the pooled E. coli isolates met the criteria for extended-spectrum beta-lactamase production. High antibiotic use (0.26 additional resistant antibiotic classes; 95% CI: 0.05, 0.47) and high income (0.28 additional resistant antibiotic classes; 95% CI: 0.06, 0.50) were associated with the carriage of antibiotic-resistant E. coli, whereas hospital birth, crowding in the home, improved drinking water and sanitation, and common childhood illnesses were not. In this setting, the carriage of antibiotic-resistant E. coli was common. Other than recent antibiotic exposure and high income, individual risk factors for the acquisition and carriage of resistance could not be identified, suggesting that population-level interventions are needed.
Financial support: Supported by NIH K24 AI102972 to E. H.; NIH K23 AI114888 to J. A. P.-M.; and NIH T32 AI007046-42 to M. E. F.
Authorsā addresses: Molly E. Fleece, Jean Gratz, Elizabeth T. Rogawski McQuade, Jie Liu, Suporn Pholwat, Eric R. Houpt, and James A. Platts-Mills, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, E-mails: mef8w@hscmail.mcc.virginia.edu, jean.gratz@gmail.com, etr5m@virginia.edu, jl5yj@virginia.edu, sp4vs@virginia.edu, erh6k@virginia.edu, and jp5t@virginia.edu. Rosemary Nshama, Thomas Walongo, Caroline Kimathi, and Esto Mduma, Haydom Global Health Institute, Haydom, Tanzania, E-mails: nshamarosemary@gmail.com, walongoisthomas@gmail.com, carolinekimathi27@gmail.com, and esto@haydom.co.tz.
These authors contributed equally to this work.
OāNeill J, 2014. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. The Review on Antimicrobial Resistance. Available at: https://amr-review.org/Publications.html. Accessed September 28, 2018.
World Health Organization, 2017. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Available at: http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/. Accessed September 28, 2018.
Liu L, Oza S, Hogan D, Perin J, Rudan I, Lawn JE, Cousens S, Mathers C, Black RE, 2015. Global, regional, and national causes of child mortality in 2000ā13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet 385: 430ā440.
Laxminarayan R, Matsoso P, Pant S, Brower C, Rottingen JA, Klugman K, Davies S, 2016. Access to effective antimicrobials: a worldwide challenge. Lancet 387: 168ā175.
Investigators of the Delhi Neonatal Infection Study (DeNIS) Collaboration, 2016. Characterisation and antimicrobial resistance of sepsis pathogens in neonates born in tertiary care centres in Delhi, India: a cohort study. Lancet Glob Health 4: e752āe760.
Kayange N, Kamugisha E, Mwizamholya DL, Jeremiah S, Mshana SE, 2010. Predictors of positive blood culture and deaths among neonates with suspected neonatal sepsis in a tertiary hospital, Mwanza-Tanzania. BMC Pediatr 10: 39.
Fox-Lewis A et al. 2018. Antimicrobial resistance in invasive bacterial infections in hospitalized children, Cambodia, 2007ā2016. Emerg Infect Dis 24: 841ā851.
Bailey JK, Pinyon JL, Anantham S, Hall RM, 2010. Commensal Escherichia coli of healthy humans: a reservoir for antibiotic-resistance determinants. J Med Microbiol 59: 1331ā1339.
Klemm EJ et al. 2018. Emergence of an extensively drug-resistant Salmonella enterica serovar typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins. MBio 9: e00105-18.
Turner P, Pol S, Soeng S, Sar P, Neou L, Chea P, Day NP, Cooper BS, Turner C, 2016. High prevalence of antimicrobial-resistant gram-negative colonization in hospitalized Cambodian infants. Pediatr Infect Dis J 35: 856ā861.
Das P, Singh AK, Pal T, Dasgupta S, Ramamurthy T, Basu S, 2011. Colonization of the gut with Gram-negative bacilli, its association with neonatal sepsis and its clinical relevance in a developing country. J Med Microbiol 60: 1651ā1660.
Richard SA, Barrett LJ, Guerrant RL, Checkley W & Miller MA MAL-ED Network Investigators, 2014. Disease surveillance methods used in the 8-site MAL-ED cohort study. Clin Infect Dis 59: S220āS224.
Houpt E et al. MAL-ED Network Investigators, 2014. Microbiologic methods utilized in the MAL-ED cohort study. Clin Infect Dis 59: S225āS232.
Mduma ER et al. 2014. The etiology, risk factors, and interactions of enteric infections and malnutrition and the consequences for child health and development study (MAL-ED): description of the Tanzanian site. Clin Infect Dis 59: S325āS330.
Clinical and Laboratory Standards Institute (CLSI), 2016. Performance Standards for Antimicrobial Susceptbility Testing. Twenty-Sixth Informational Supplement. M100-S26. Wayne, PA: CLSI.
Seidman JC, Coles CL, Silbergeld EK, Levens J, Mkocha H, Johnson LB, Munoz B, West SK, 2014. Increased carriage of macrolide-resistant fecal E. coli following mass distribution of azithromycin for trachoma control. Int J Epidemiol 43: 1105ā1113.
Roschanski N, Fischer J, Guerra B, Roesler U, 2014. Development of a multiplex real-time PCR for the rapid detection of the predominant beta-lactamase genes CTX-M, SHV, TEM and CIT-type AmpCs in Enterobacteriaceae. PLoS One 9: e100956.
Magiorakos AP et al. 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18: 268ā281.
Tadesse BT, Ashley EA, Ongarello S, Havumaki J, Wijegoonewardena M, Gonzalez IJ, Dittrich S, 2017. Antimicrobial resistance in Africa: a systematic review. BMC Infect Dis 17: 616.
Mathur S, Fuchs A, Bielicki J, Van Den Anker J, Sharland M, 2018. Antibiotic use for community-acquired pneumonia in neonates and children: WHO evidence review. Paediatr Int Child Health 38(Supp 1): S66āS75.
Backhed F et al. 2015. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17: 690ā703.
Rogawski ET et al. 2017. Use of antibiotics in children younger than two years in eight countries: a prospective cohort study. Bull World Health Organ 95: 49ā61.
Chen S, Larsson M, Robinson RC, Chen SL, 2017. Direct and convenient measurement of plasmid stability in lab and clinical isolates of E. coli. Sci Rep 7: 4788.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 114 | 114 | 46 |
Full Text Views | 1329 | 184 | 0 |
PDF Downloads | 301 | 58 | 0 |