Bass CC, 1911. A new conception of immunity. Its application to the cultivation of protozoa and bacteria from the blood and to therapeutic measures. J Am Med Assoc 57: 1534.
Bass CC, Johns FM, 1912. The cultivation of malarial plasmodia (Plasmodium vivax and Plasmodium falciparum) in vitro. J Exp Med 16: 567–579.
Haynes JD, Diggs CL, Hines FA, Desjardins RE, 1976. Culture of human malaria parasites P. falciparum. Nature 263: 767–769.
Trager W, Jensen JB, 1976. Human malaria parasites in continuous culture. Science 193: 673–675.
Grun JL, Weidanz WP, 1987. Cultivation of Plasmodium falciparum in commercially available sera depleted of natural antibodies reactive with human erythrocytes. J Parasitol 73: 384–388.
Basco LK, 2003. Molecular epidemiology of malaria in Cameroon. XV. Experimental studies on serum substitutes and supplements and alternative culture media for in vitro drug sensitivity assays using fresh isolates of Plasmodium falciparum. Am J Trop Med Hyg 69: 168–173.
Basco LK, 2006. Molecular epidemiology of malaria in Cameroon. XXIII. Experimental studies on serum substitutes and alternative culture media for in vitro drug sensitivity assays using clinical isolates of Plasmodium falciparum. Am J Trop Med Hyg 75: 777–782.
Srivastava K, Singh S, Singh P, Puri SK, 2007. In vitro cultivation of Plasmodium falciparum: studies with modified medium supplemented with Albumax II and various animal sera. Exp Parasitol 116: 171–174.
Zolg JW, Macleod AJ, Dickson IH, Scaife JG, 1982. Plasmodium falciparum: modifications of the in vitro culture conditions improving parasitic yields. J Parasitol 68: 1072–1080.
Ferrer J, Rosal MD, Vidal JM, Prats C, Valls J, Herreros EA, Lopez D, Gargallo D, 2008. Effect of the haematocrit layer geometry on Plasmodium falciparum static thin-layer in vitro cultures. Malar J 7: 203.
Allen RJW, Kirk K, 2010. Plasmodium falciparum culture: the benefits of shaking. Mol Biochem Parasitol 169: 63–65.
Scheibel LW, Ashton SH, Trager W, 1979. Plasmodium falciparum: microaerophilic requirements in human red blood cells. Exp Parasitol 47: 410–418.
Waki S, Miyagami T, Nakazawa S, Igarashi I, Suzuki M, 1987. Maintenance and propagation of human malaria parasites in culture using an ordinary CO2 incubator. Trans R Soc Trop Med Hyg 78: 418.
Binh VQ, Luty AJF, Kremsner PG, 1997. Differential effects of human serum and cells on the growth of Plasmodium falciparum adapted to serum-free in vitro culture conditions. Am J Trop Med Hyg 57: 594–600.
Haruki K, Kobayashi F, Fujino T, Matsui T, Tsuji M, 2001. Evaluation of Anaeropack® (AnP) type as tools of Plasmodium falciparum cultivation and drug sensitivity tests. Jpn J Trop Med Hyg 29: 365–370.
Pascual A, Basco LK, Baret E, Amalvict R, Travers D, Rogier C, Pradines B, 2011. Use of the atmospheric generators for capnophilic bacteria Genbag-CO2 for the evaluation of in vitro Plasmodium falciparum susceptibility to standard anti-malarial drugs. Malar J 20: 8.
Grunwald D, Mayol J-F, Ronot X, 2010. Cycle Cellulaire et Cytométrie en Flux. Cachan, France: Lavoisier, 217–219.
Janse CJ, Haghparast A, Sperança MA, Ramesar J, Kroeze H, del Portillo HA, Waters AP, 2003. Malaria parasites lacking eEF1A have a normal S/M phase yet grow more slowly due to a longer G1 phase. Mol Microbiol 50: 1539–1551.
Moloney MB, Pawluk AR, Ackland NR, 1990. Plasmodium falciparum growth in deep culture. Trans R Soc Trop Med Hyg 84: 516–518.
Li T, Glushakova S, Zimmerberg J, 2003. A new method for culturing Plasmodium falciparum shows replication at the highest erythrocyte densities. J Infect Dis 187: 159–162.
Preechapornkul P, Chotivanich K, Imwong M, Dondorp AM, Lee SJ, Day NPJ, White NJ, Pukrittayakamee S, 2010. Optimizing the culture of Plasmodium falciparum in hollow fiber bioreactors. Southeast Asian J Trop Med Public Health 41: 761–769.
Dalton JP, Demanga CG, Reiling SJ, Wunderlich J, Eng JWL, Rohrbach P, 2012. Large-scale growth of the Plasmodium falciparum malaria parasite in a wave bioreactor. Int J Parasitol 42: 215–220.
Lazarus MD, Schneider TG, Taraschi TF, 2008. A new model for hemoglobin ingestion and transport by the human malaria parasite Plasmodium falciparum. J Cell Sci 121: 1937–1949.
Divo AA, Geary TG, Jensen JB, Ginsburg H, 1985. The mitochondrion of Plasmodium falciparum visualized by rhodamine 123 fluorescence. J Protozool 32: 442–446.
Van Dooren GG, Stimmler LM, McFadden GI, 2006. Metabolic maps and functions of the Plasmodium mitochondrion. FEMS Microbiol Rev 30: 596–630.
Guyton AC, Hall J, 1996. Textbook of Medical Physiology, 9th edition. Philadelphia, PA: W. B. Saunders Company.
Boron WF, 2003. Transport of oxygen and carbon dioxide in the blood. Boron WF, Boulpaep EL, eds. Medical Physiology. A Cellular and Molecular Approach. Philadelphia, PA: Saunders.
Krungkrai J, Burat D, Kudan S, Krungkrai S, Prapunwattana P, 1999. Mitochondrial oxygen consumption in asexual and sexual bloodstages of the human malarial parasite, Plasmodium falciparum. Southeast Asian J Trop Med Public Health 30: 636–642.
Briolant S et al. 2007. Influence of oxygen on asexual blood cycle and susceptibility of Plasmodium falciparum to chloroquine: requirement of a standardized in vitro assay. Malar J 6: 44.
The standard in vitro cultivation procedure for Plasmodium falciparum requires gas exchange and a microaerophilic atmosphere. A novel system using a commercially available cell culture device (Petaka G3™; Celartia Ltd., Powell, OH) was assessed for long-term cultivation of a P. falciparum reference laboratory clone in normal air. Parasite growth during 30 days was similar, or better, in Petaka G3 than that in the standard cultivation method with gas exchange in a CO2 incubator. The successful cultivation of P. falciparum in the Petaka G3 device suggests that low O2 content available in hemoglobin and dissolved gas in the blood is sufficient for long-term cultivation. This finding may open the way to novel methods to cultivate and adapt P. falciparum field isolates to in vitro conditions with more ease.
Financial support: This work was supported by a grant from the Royal Institute of Cambodian Traditional Medicine (IRMTC_ABTE-ToxEMAC_ValMyc-2015_Ext. 2017).
Authors’ addresses: Antoine Géry, Ho-Mai-Thy N’Guyen, David Garon, and Philippe Eldin de Pécoulas, Centre François Baclesse, Normandie Université, UNICAEN, UR ABTE EA 4651, Caen, France, E-mails: antoine.gery@gmail.com, maithy2511@gmail.com, estelle.richard@unicaen.fr, david.garon@unicaen.fr, philippe.eldin-depecoulas@unicaen.fr. Leonardo K. Basco, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Aix Marseille University, Marseille, France, E-mail: lkbasco@yahoo.fr. Natacha Heutte, Normandie Université, UNIROUEN, CETAPS EA 3832, Mont Saint Aignan Cedex, France, E-mail: natacha.heutte@univ-rouen.fr. Marilyne Guillamin, Normandie Université, UNICAEN, INSERM U 1075 COMETE, Caen, France, and Normandie Université, UNICAEN, Plateau de Cytométrie en Flux, ICORE, Caen, France, E-mail: marilyne.duval@unicaen.fr.