• 1.

    Miranda A, Carrasco R, Paz H, Pascale JM, Samudio F, Saldaña A, Santamaría G, Mendoza Y, Calzada JE, 2009. Molecular epidemiology of American tegumentary leishmaniasis in Panama. Am J Trop Med Hyg 81: 565571.

    • Search Google Scholar
    • Export Citation
  • 2.

    Ministerio de Salud de Panamá (Minsa), 2014. Informe Anual de Epidemiología de la Leishmaniasis. Panamá: Depto. De Epidemiologia, Dirección de Salud Pública.

  • 3.

    Chaves LF, Cohen JM, Pascual M, Wilson ML, 2008. Social exclusion modifies climate and deforestation impacts on a vector-borne disease. PLoS Negl Trop Dis 2: e176.

    • Search Google Scholar
    • Export Citation
  • 4.

    Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M; WHO Leishmaniasis Control Team, 2012. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7: e35671.

    • Search Google Scholar
    • Export Citation
  • 5.

    Salomón OD, Quintana MG, Mastrángelo AV, Fernández MS, 2012. Leishmaniasis and climate change—case study: Argentina. J Trop Med 2012: 601242.

  • 6.

    Chaves LF, Calzada JE, Valderama A, Saldaña A, 2014. Cutaneous leishmaniasis and sand fly fluctuations are associated with El Niño in Panamá. PLoS Negl Trop Dis 8: e3210.

    • Search Google Scholar
    • Export Citation
  • 7.

    Yamada K, Valderrama A, Gottdenker N, Cerezo L, Minakawa N, Saldaña A, Calzada JE, Chaves LF, 2016. Macroecological patterns of American cutaneous leishmaniasis transmission across the health areas of Panamá (1980–2012). Parasite Epidemiol Control 1: 4255.

    • Search Google Scholar
    • Export Citation
  • 8.

    Christensen HA, Fairchild GB, Herrer A, Johnson CM, Young DG, Vasquez AM, 1983. The ecology of cutaneous leishmaniasis in the Republic of Panama. J Med Entomol 20: 463484.

    • Search Google Scholar
    • Export Citation
  • 9.

    Vásquez AM, Paz H, Méndez E, Alvar J, 1994. Leishmaniasis en Panamá. Panamá: Ministerio de Salud, 12.

  • 10.

    Valderrama A, Herrera M, Salazar A, 2008. Relacioìn entre la composicioìn de especies del geìnero de Lutzomyia frança (Diptera: Psychodidae: Phlebotominae) y los diferentes tipos de bosques en Panamaì. Acta Zool Mex 24: 6778.

    • Search Google Scholar
    • Export Citation
  • 11.

    Telford SR, Herrer A, Christensen HA, 1972. Enzootic cutaneous leishmaniasis in eastern Panama. Ecological factors relating to the mammalian hosts. Ann Trop Med Parasitol 66: 173179.

    • Search Google Scholar
    • Export Citation
  • 12.

    Herrer A, Christensen HA, 1980. Leishmania braziliensis in the Panamanian two-toed sloth, Choloepus hoffmanni. Am J Trop Med Hyg 29: 11961200.

    • Search Google Scholar
    • Export Citation
  • 13.

    Christensen H, Johnson C, Vasquez AM, 1993. Leishmaniasis cutánea en Panamá: un breve resumen [Article in Spanish]. Rev Med Panama 9: 182187.

    • Search Google Scholar
    • Export Citation
  • 14.

    González K et al. 2015. Survey of wild mammal hosts of cutaneous leishmaniasis parasites in Panamá and Costa Rica. Trop Med Health 43: 7578.

  • 15.

    Calzada JE, Saldaña A, González K, Rigg C, Pineda V, Santamaría AM, Rodríguez I, Gottdenker NL, Laurenti MD, Chaves LF, 2015. Cutaneous leishmaniasis in dogs: is high seroprevalence indicative of a reservoir role? Parasitology 142: 12021214.

    • Search Google Scholar
    • Export Citation
  • 16.

    Miranda A, Saldaña A, González K, Paz H, Santamaría G, Samudio F, Calzada JE, 2012. Evaluation of PCR for cutaneous leishmaniasis diagnosis and species identification using filter paper samples in Panama, central America. Trans R Soc Trop Med Hyg 106: 544548.

    • Search Google Scholar
    • Export Citation
  • 17.

    Kent RJ, 2009. Molecular methods for arthropod bloodmeal identification and applications to ecological and vector-borne disease studies. Mol Ecol Resour 9: 418.

    • Search Google Scholar
    • Export Citation
  • 18.

    Afonso MM, Duarte R, Miranda JC, Caranha L, Rangel EF, 2012. Studies on the feeding habits of Lutzomyia (Lutzomyia) longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae: Phlebotominae) populations from endemic areas of American visceral leishmaniasis in northeastern Brazil. J Trop Med 2012: 858657.

    • Search Google Scholar
    • Export Citation
  • 19.

    Rêgo FD, Rugani JMN, Shimabukuro PHF, Tonelli GB, Quaresma PF, Gontijo CMF, 2015. Molecular detection of Leishmania in phlebotomine sand flies (Diptera: Psychodidae) from a cutaneous leishmaniasis focus at Xakriabá Indigenous Reserve, Brazil. PLoS One 10: e0122038.

    • Search Google Scholar
    • Export Citation
  • 20.

    Van Eys GJ, Schoone GJ, Kroon NC, Ebeling SB, 1992. Sequence analysis of small subunit ribosomal RNA genes and its use for detection and identification of Leishmania parasites. Mol Biochem Parasitol 51: 133142.

    • Search Google Scholar
    • Export Citation
  • 21.

    Kirstein F, Gray JS, 1996. A molecular marker for the identification of the zoonotic reservoirs of lyme borreliosis by analysis of the blood meal in its European vector Ixodes ricinus. Appl Environ Microbiol 62: 40604065.

    • Search Google Scholar
    • Export Citation
  • 22.

    Aransay AM, Scoulica E, Tselentis Y, 2000. Detection and identification of Leishmania DNA within naturally infected sand flies by seminested PCR on minicircle kinetoplastic DNA. Appl Environ Microbiol 66: 19331938.

    • Search Google Scholar
    • Export Citation
  • 23.

    Schönian G, Nasereddin A, Dinse N, Schweynoch C, Schallig HDF, Presber W, Jaffe CL, 2003. PCR diagnosis and characterization of Leishmania in local and imported clinical samples. Diagn Microbiol Infect Dis 47: 349358.

    • Search Google Scholar
    • Export Citation
  • 24.

    Quaresma PF, de Lima Carvalho GM, Ramos MCNF, Andrade Filho JD, 2012. Natural Leishmania spp. reservoirs and phlebotomine sand fly food source identification in Ibitipoca State Park, Minas Gerais, Brazil. Mem Inst Oswaldo Cruz 107: 480485.

    • Search Google Scholar
    • Export Citation
  • 25.

    Saldaña A, Chaves LF, Rigg CA, Wald C, Calzada JE, 2013. Clinical cutaneous leishmaniasis rates are associated with household Lutzomyia gomezi, Lu. panamensis, and Lu. trapidoi abundance in Trinidad de Las Minas, western Panama. Am J Trop Med Hyg 88: 572574.

    • Search Google Scholar
    • Export Citation
  • 26.

    Chaves LF, Calzada JE, Rigg C, Valderrama A, Gottdenker NL, Saldaña A, 2013. Leishmaniasis sand fly vector density reduction is less marked in destitute housing after insecticide thermal fogging. Parasit Vectors 6: 164.

    • Search Google Scholar
    • Export Citation
  • 27.

    Calzada JE, Saldaña A, Rigg C, Valderrama A, Romero L, Chaves LF, 2013. Changes in phlebotomine sand fly species composition following insecticide thermal fogging in a rural setting of western Panamá. PLoS One 8: e53289.

    • Search Google Scholar
    • Export Citation
  • 28.

    Young D, Duncan M, 1994. Guide to the Identification and Geographic Distribution of Lutzomyia Sand Flies in Mexico, the West Indies, Central and South America (Diptera: Psychodidae). Memories of the American Entomological Institute. Gainesville, FL: Associated Publishers, 54.

  • 29.

    Kuhls K, Mauricio IL, Pratlong F, Presber W, Schönian G, 2005. Analysis of ribosomal DNA internal transcribed spacer sequences of the Leishmania donovani complex. Microbes Infect 7: 12241234.

    • Search Google Scholar
    • Export Citation
  • 30.

    Kent RJ, Norris DE, 2005. Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome B. Am J Trop Med Hyg 73: 336342.

    • Search Google Scholar
    • Export Citation
  • 31.

    Fornadel CM, Norris DE, 2008. Increased endophily by the malaria vector Anopheles arabiensis in southern Zambia and identification of digested blood meals. Am J Trop Med Hyg 79: 876880.

    • Search Google Scholar
    • Export Citation
  • 32.

    Kumar S, Stecher G, Tamura K, 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 18701874.

    • Search Google Scholar
    • Export Citation
  • 33.

    Farrington CP, 1992. Estimating prevalence by group testing using generalized linear models. Stat Med 11: 15911597.

  • 34.

    Speybroeck N, Williams CJ, Lafia KB, Devleesschauwer B, Berkvens D, 2012. Estimating the prevalence of infections in vector populations using pools of samples. Med Vet Entomol 26: 361371.

    • Search Google Scholar
    • Export Citation
  • 35.

    Venables WN, Ripley BD, 2002. Modern Applied Statistics with S. Switzerland AG: Springer.

  • 36.

    Añez N, Nieves E, Cazorla D, Oviedo M, De Yarbuh AL, Valera M, 1994. Epidemiology of cutaneous leishmaniasis in Merida, Venezuela. III. Altitudinal distribution, age structure, natural infection and feeding behavior of sandflies and their relation to the risk of transmission. Ann Trop Med Parasitol 88: 279287.

    • Search Google Scholar
    • Export Citation
  • 37.

    Chaves LF, Harrington LC, Keogh CL, Nguyen AM, Kitron UD, 2010. Blood-feeding patterns of mosquitoes: random or structured? Front Zool 7: 3.

  • 38.

    Rabinovich JE, Kitron UD, Obed Y, Yoshioka M, Gottdenker N, Chaves LF, 2011. Ecological patterns of blood-feeding by kissing-bugs (Hemiptera, Reduviidae, Triatominae). Mem Inst Oswaldo Cruz 106: 479494.

    • Search Google Scholar
    • Export Citation
  • 39.

    Palatnik-de-Sousa C, Day MJ, 2011. One Health: the global challenge of epidemic and endemic leishmaniasis. Parasit Vectors 4: 197.

  • 40.

    Chaves LF, 2017. Climate change and the biology of insect vectors of human pathogens. Johnson S, Jones H, eds. Global Climate Change and Terrestrial Invertebrates. Hoboken, NJ: Wiley-Blackwell, 126–147.

  • 41.

    Ruiz Márvez E, 2011. Estandarización de la Técnica de Amplificación del Gen Citocromo B, Para Identificar la Fuente de Alimento de Cx. quinquefasciatus en el Centro Agropecuario Marengo de la Universidad Nacional de Colombia Sede Bogotá. Bogotá, Colombia: Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, 66.

  • 42.

    Pérez JE, Ogusuku E, Inga R, Lopez M, Monje J, Paz L, Nieto E, Arevalo J, Guerra H, 1994. Natural Leishmania infection of Lutzomyia spp. in Peru. Trans R Soc Trop Med Hyg 88: 161164.

    • Search Google Scholar
    • Export Citation
  • 43.

    Torres M et al. 1998. Lutzomyia nuñeztovari anglesi (Diptera: Psychodidae) as a probable vector of Leishmania braziliensis in the Yungas, Bolivia. Acta Trop 71: 311316.

    • Search Google Scholar
    • Export Citation
  • 44.

    Rodríguez N, De Lima H, Aguilar CM, Rodriguez A, Barker DC, Convit J, 2002. Molecular epidemiology of cutaneous leishmaniasis in Venezuela. Trans R Soc Trop Med Hyg 96 (Suppl 1): S105S109.

    • Search Google Scholar
    • Export Citation
  • 45.

    Jorquera A, González R, Marchán-Marcano E, Oviedo M, Matos M, 2005. Multiplex-PCR for detection of natural Leishmania infection in Lutzomyia spp. captured in an endemic region for cutaneous leishmaniasis in state of Sucre, Venezuela. Mem Inst Oswaldo Cruz 100: 4548.

    • Search Google Scholar
    • Export Citation
  • 46.

    De Pita-Pereira D, Alves CR, Souza MB, Brazil RP, Bertho AL, de Figueiredo Barbosa A, Britto CC, 2005. Identification of naturally infected Lutzomyia intermedia and Lutzomyia migonei with Leishmania (Viannia) braziliensis in Rio de Janeiro (Brazil) revealed by a PCR multiplex non-isotopic hybridisation assay. Trans R Soc Trop Med Hyg 99: 905913.

    • Search Google Scholar
    • Export Citation
  • 47.

    Córdoba-Lanús E, De Grosso ML, Piñero JE, Valladares B, Salomón OD, 2006. Natural infection of Lutzomyia neivai with Leishmania spp. in northwestern Argentina. Acta Trop 98: 15.

    • Search Google Scholar
    • Export Citation
  • 48.

    Paiva BR, Secundino NF, Nascimento JC, Pimenta PF, Galati EA, Junior HF, Malafronte RS, 2006. Detection and identification of Leishmania species in field-captured phlebotomine sandflies based on mini-exon gene PCR. Acta Trop 99: 252259.

    • Search Google Scholar
    • Export Citation
  • 49.

    Perruolo G, Rodríguez N, Feliciangeli MD, 2006. Isolation of Leishmania (Viannia) braziliensis from Lutzomyia spinicrassa (species group Verrucarum) Morales Osorno Mesa, Osorno and Hoyos 1969, in the Venezuelan Andean region. Parasite 13: 1722.

    • Search Google Scholar
    • Export Citation
  • 50.

    Oliveira-Pereira YN, Rebêlo JM, Moraes JL, Pereira SR, 2006. [Molecular diagnosis of the natural infection rate due to Leishmania sp in sandflies (Psychodidae, Lutzomyia) in the Amazon region of Maranhão, Brazil] [Article in Portuguese.] Rev Soc Bras Med Trop 39: 540543.

    • Search Google Scholar
    • Export Citation
  • 51.

    Santamaría E, Ponce N, Zipa Y, Ferro C, 2006. Presencia en el peridomicilio de vectores infectados con Leishmania (Viannia) panamensis en dos focos endémicos en el occidente de Boyacá, piedemonte del valle del Magdalena medio, Colombia. Biomedica 26: 8294.

    • Search Google Scholar
    • Export Citation
  • 52.

    Cochero S, Anaya Y, Díaz Y, Paternina M, Luna A, Paternina L, Eduar Elías B, 2007. [Natural infection of Lutzomyia cayennensis cayennensis with trypanosomatid parasites (Kinetoplastida: Trypanosomatidae) in Los Montes de Maria, Colombia] [article in Spanish]. Rev Cubana Med Trop 59: 3539.

    • Search Google Scholar
    • Export Citation
  • 53.

    Do Nascimento JC, de Paiva BR, dos Santos Malafronte R, Fernandes WD, Galati EA, 2007. Natural infection of phlebotomines (Diptera: Psychodidae) in a visceral-leishmaniasis focus in Mato Grosso do Sul, Brazil. Rev Inst Med Trop 49: 119122.

    • Search Google Scholar
    • Export Citation
  • 54.

    Neitzke HC, Scodro RB, Castro KR, Sversutti AC, Silveira TG, Teodoro U, 2008. Research of natural infection of phlebotomines for Leishmania, in the state of Paraná. Rev Soc Bras Med Trop 41: 1722.

    • Search Google Scholar
    • Export Citation
  • 55.

    Marcondes CB, Bittencourt IA, Stoco PH, Eger I, Grisard EC, Steindel M, 2009. Natural infection of Nyssomyia neivai (Pinto, 1926) (Diptera: Psychodidae, Phlebotominae) by Leishmania (Viannia) spp. in Brazil. Trans R Soc Trop Med Hyg 103: 10931097.

    • Search Google Scholar
    • Export Citation
  • 56.

    Sánchez-García L, Berzunza-Cruz M, Becker-Fauser I, Rebollar-Téllez EA, 2010. Sand flies naturally infected by Leishmania (L.) mexicana in the peri-urban area of Chetumal city, Quintana Roo, México. Trans R Soc Trop Med Hyg 104: 406411.

    • Search Google Scholar
    • Export Citation
  • 57.

    Kato H, Gomez EA, Cáceres AG, Vargas F, Mimori T, Yamamoto K, Iwata H, Korenaga M, Velez L, Hashiguchi Y, 2011. Natural infections of man-biting sand flies by Leishmania and Trypanosoma species in the northern Peruvian Andes. Vector Borne Zoonotic Dis 11: 515521.

    • Search Google Scholar
    • Export Citation
  • 58.

    Valdivia HO et al. 2012. Natural Leishmania infection of Lutzomyia auraensis in Madre de Dios, Peru, detected by a fluorescence resonance energy transfer-based real-time polymerase chain reaction. Am J Trop Med Hyg 87: 511517.

    • Search Google Scholar
    • Export Citation
  • 59.

    Vásquez Trujillo A, González Reina AE, Góngora Orjuela A, Prieto Suárez E, Palomares JE, Buitrago Alvarez LS, 2013. Seasonal variation and natural infection of Lutzomyia antunesi (Diptera: Psychodidae: Phlebotominae), an endemic species in the Orinoquia region of Colombia. Mem Inst Oswaldo Cruz 108: 463469.

    • Search Google Scholar
    • Export Citation
  • 60.

    Brito VN, Almeida Ado B, Nakazato L, Duarte R, Souza CO, Sousa VR, 2014. Phlebotomine fauna, natural infection rate and feeding habits of Lutzomyia cruzi in Jaciara, state of Mato Grosso, Brazil. Mem Inst Oswaldo Cruz 109: 899904.

    • Search Google Scholar
    • Export Citation
  • 61.

    Neitzke-Abreu HC, Reinhold-Castro KR, Venazzi MS, Scodro RB, Dias Ade C, Silveira TG, Teodoro U, Lonardoni MV, 2014. Detection of Leishmania (Viannia) in Nyssomyia neivai and Nyssomyia whitmani by multiplex polymerase chain reaction, in southern Brazil. Rev Inst Med Trop Sao Paulo 56: 391395.

    • Search Google Scholar
    • Export Citation
  • 62.

    Moya S, Giuliani M, Manteca Acosta M, Salomón OD, Liotta DJ, 2015. First description of Migonemyia migonei (França) and Nyssomyia whitmani (Antunes & Coutinho) (Psychodidae: Phlebotominae) natural infected by Leishmania infantum in Argentina. Acta Trop 152: 181184.

    • Search Google Scholar
    • Export Citation
  • 63.

    Pereira Júnior AM, Garcia Teles CB, de Azevedo dos Santos AP, de Souza Rodrigues M, Marialva EF, Costa Pessoa FA, Fernandes Medeiros J, 2015. Ecological aspects and molecular detection of Leishmania DNA ross (Kinetoplastida: Trypanosomatidae) in phlebotomine sandflies (Diptera: Psychodidae) in terra Firme and Várzea environments in the middle Solimões region, Amazonas state, Brazil. Parasit Vectors 8: 180.

    • Search Google Scholar
    • Export Citation
  • 64.

    Arias JR, Miles MA, Naiff RD, Póvoa MM, Freitas RA, Biancardi CB, Castellon EG, 1985. Flagellate infection of Brazilian sandflies (Diptera: Psychodidadae): isolation in vitro and biochemical identification of Endotrypanum and Leishmania. Am J Trop Med Hyg 34: 10981108.

    • Search Google Scholar
    • Export Citation
  • 65.

    Miranda JC, Reis E, Schriefer A, Gonçalves M, Reis MG, Carvalho L, Fernandes O, Barral-Netto M, Barral A, 2002. Frequency of infection of Lutzomyia phlebotomines with Leishmania braziliensis in a Brazilian endemic area as assessed by pinpoint capture and polymerase chain reaction. Mem Inst Oswaldo Cruz 97: 185188.

    • Search Google Scholar
    • Export Citation
  • 66.

    Silva TM, Castellón GE, 2012. Flebotomineos (Diptera: Psychodiae) infectados naturalmente por tripanosomatídeos (Kinetoplastida: Trypanosomatidae) em fragmentos florestais urbanos em Manaus—Amazonas (Brasil). Rev Colombiana Cienc Anim 4: 121129.

    • Search Google Scholar
    • Export Citation
  • 67.

    Tesh RB, Chaniotis BN, Aronson MD, Johnson KM, 1971. Natural host preferences of Panamanian phlebotomine sandflies as determined by precipitin test. Am J Trop Med Hyg 20: 150156.

    • Search Google Scholar
    • Export Citation
  • 68.

    Chaves LF, Hernandez MJ, 2004. Mathematical modelling of American cutaneous leishmaniasis: incidental hosts and threshold conditions for infection persistence. Acta Trop 92: 245252.

    • Search Google Scholar
    • Export Citation
  • 69.

    Chaves LF, Hernandez MJ, Dobson AP, Pascual M, 2007. Sources and sinks: revisiting the criteria for identifying reservoirs for American cutaneous leishmaniasis. Trends Parasitol 23: 311316.

    • Search Google Scholar
    • Export Citation
  • 70.

    Porter C, De Foliart G, 1981. The man-biting activity of phlebotomine sand flies (Diptera: Psychodidae) in tropical wet forest environment in Colombia. Arq Zool São Paulo 30: 81158.

    • Search Google Scholar
    • Export Citation
  • 71.

    Feliciangeli MD, 1987. Ecology of sandflies (Diptera: Psychodidae) in a restricted focus of cutaneous leishmaniasis in northern Venezuela. II. Species composition in relation to habitat, catching method and hour of catching. Mem Inst Oswaldo Cruz 82: 125131.

    • Search Google Scholar
    • Export Citation
  • 72.

    Feliciangeli MD, 1997. Hourly activity of Lutzomyia ovallesi and L. gomezi (Diptera: Psychodidae), vectors of cutaneous leishmaniasis in northcentral Venezuela. J Med Entomol 34: 110115.

    • Search Google Scholar
    • Export Citation
  • 73.

    Valderrama A, Tavares M, Andrade D, 2014. Phylogeography of the Lutzomyia gomezi (Diptera: Phlebotominae) on the Panama Isthmus. Parasit Vectors 7: 9.

    • Search Google Scholar
    • Export Citation
  • 74.

    Young DG, Arias JR, 1992. Flebótomos Vectores de Leishmaniosis en las Américas. Washington, DC: OPAS, 33.

  • 75.

    Contreras MA, 2013. Lutzomyia spp. (Diptera: Psychodidae) en Zonas Cafeteras de la Región Andina Colombiana: Taxonomía e Importancia Médica. Tesis de Maestría, Facultad de Ciencias, Universidad Nacional de Colombia, Medellín, Colombia, 196.

  • 76.

    Dutari LC, Loaiza JR, 2014. American cutaneous leishmaniasis in Panama: a historical review of entomological studies on anthropophilic Lutzomyia sand fly species. Parasit Vectors 7: 218.

    • Search Google Scholar
    • Export Citation
  • 77.

    Feliciangeli M, 2014. Leishmaniasis en Venezuela: situación actual, acciones y perspectivas para el control vectorial en el marco de un programa de control multisectorial. Bol Mal Salud Amb 54: 17.

    • Search Google Scholar
    • Export Citation
  • 78.

    Cazorla-Perfetti D, 2015. Lista comentada de los flebotominos (Diptera: Psychodidae, Phlebotominae). Revista Multidisciplinaria Del Consejo De Investigación De La Universidad De Oriente 27: 178231.

    • Search Google Scholar
    • Export Citation
  • 79.

    Hashiguchi Y, Chiller T, Inchausti A, De Arias A, Kawabata M, Alexander JB, 1992. Phlebotomine sand fly species in Paraguay and their infection with Leishmania. Ann Trop Med Parasitol 86: 175180.

    • Search Google Scholar
    • Export Citation
  • 80.

    Naiff R, Freitas R, Naiff M, Arias J, Barret T, Momen H, Grimaldi Júnior G, 1991. Epidemiological and nosological aspects of Leishmania naiffi Lainson & Shaw, 1989. Mem Inst Oswaldo Cruz 86: 317321.

    • Search Google Scholar
    • Export Citation
  • 81.

    Pratlong F, Deniau M, Darie H, Eichenlaub S, Pröll S, Garrabe E, Dedet J, 2002. Human cutaneous leishmaniasis caused by Leishmania naiffi is wide-spread in South America. Ann Trop Med Parasitol 96: 781785.

    • Search Google Scholar
    • Export Citation
  • 82.

    Fagundes-Silva GA, Romero GA, Cupolillo E, Yamashita EP, Gomes-Silva A, Guerra JA, Da-Cruz AM, 2015. Leishmania (Viannia) naiffi: rare enough to be neglected? Mem Inst Oswaldo Cruz 110: 797800.

    • Search Google Scholar
    • Export Citation
  • 83.

    Azpurua J, De La Cruz D, Valderama A, Windsor D, 2010. Lutzomyia sand fly diversity and rates of infection by Wolbachia and an exotic Leishmania species on Barro Colorado Island, Panama. PLoS Negl Trop Dis 4: e627.

    • Search Google Scholar
    • Export Citation
  • 84.

    Kieran TJ, Gottdenker NL, Varian CP, Saldaña A, Means N, Owens D, Calzada JE, Glenn TC, 2017. Blood meal source characterization using illumina sequencing in the Chagas disease vector Rhodnius pallescens (Hemiptera: Reduviidae) in Panamá. J Med Entomol 54: 17861789.

    • Search Google Scholar
    • Export Citation
  • 85.

    Tanure A, Peixoto JC, Afonso MM, Duarte R, Pinheiro ADC, Coelho SVB, Barata RA, 2015. Identification of sandflies (Diptera: Psychodidae: Phlebotominae) blood meals in an endemic leishmaniasis area in Brazil. Rev Inst Med Trop Sao Paulo 57: 321324.

    • Search Google Scholar
    • Export Citation
  • 86.

    Obwaller AG, Karakus M, Poeppl W, Töz S, Özbel Y, Aspöck H, Walochnik J, 2016. Could Phlebotomus mascittii play a role as a natural vector for Leishmania infantum? New data. Parasit Vectors 9: 458.

    • Search Google Scholar
    • Export Citation
  • 87.

    Senghor MW et al. 2016. Transmission of Leishmania infantum in the canine leishmaniasis focus of Mont-Rolland, Senegal: ecological, parasitological and molecular evidence for a possible role of Sergentomyia sand flies. PLoS Negl Trop Dis 10: 11.

    • Search Google Scholar
    • Export Citation
  • 88.

    Mahmoudzadeh-Niknam H, Abrishami F, Doroudian M, Moradi M, Alimohammadian M, Parvizi P, Hatam G, Mohebali M, Khalaj V, 2011. The problem of mixing up of Leishmania isolates in the laboratory: suggestion of ITS1 gene sequencing for verification of species. Iran J Parasitol 6: 4148.

    • Search Google Scholar
    • Export Citation
  • 89.

    Killick-Kendrick R, Molyneux DH, Ashford RW, 1974. Leishmania in phlebotomid sandflies. I. Modifications of the flagellum associated with attachment to the mid-gut and oesophageal valve of the sand fly. Proc R Soc Lond B Biol Sci 187: 409419.

    • Search Google Scholar
    • Export Citation
  • 90.

    Chaves LF, Añez N, 2004. Species co-occurrence and feeding behavior in sand fly transmission of American cutaneous leishmaniasis in western Venezuela. Acta Trop 92: 219224.

    • Search Google Scholar
    • Export Citation
  • 91.

    Chaves LF, Añez N, 2016. Nestedness patterns of sand fly (Diptera: Psychodidae) species in a neotropical semi-arid environment. Acta Trop 153: 713.

    • Search Google Scholar
    • Export Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Leishmania spp. Infection Rate and Feeding Patterns of Sand Flies (Diptera: Psychodidae) from a Hyperendemic Cutaneous Leishmaniasis Community in Panamá

View More View Less
  • 1 Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Ciudad de Panamá, Panamá;
  • | 2 Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Ciudad de Panamá, Panamá;
  • | 3 Instituto Costarricense de Investigación y enseñanza en Nutrición y Salud (INCIENSA), Tres Ríos, Costa Rica;
  • | 4 Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
Restricted access

American cutaneous leishmaniasis (ACL) is a common and important vector-borne parasitic zoonosis in Panamá. Here, we study Leishmania spp. infection rates and blood-feeding patterns among common sand flies in Trinidad de Las Minas, a rural community with hyperendemic ACL transmission, and where a deltamethrin fogging trial was performed. Sand flies were collected from April 2010 to June 2011 with light traps installed inside and in the peridomicile of 24 houses. We restricted our analysis to the most abundant species at the study site: Lutzomyia trapidoi, Lutzomyia gomezi, Lutzomyia panamensis, Lutzomyia triramula, and Lutzomyia dysponeta. We detected Leishmania spp. infection in sand flies by polymerase chain reaction (PCR) amplification of the internal transcribed spacer region 1 (ITS-1) in pooled females (1–10 females per pool). Host species of engorged sand flies were identified using a cytochrome b PCR. From 455 sand fly pools analyzed, 255 pools were positive for Leishmania spp., with an estimated infection rate (confidence interval) of 0.096 [0.080–0.115] before the deltamethrin fogging which slightly, but not significantly (P > 0.05), increased to 0.116 [0.098–0.136] after the deltamethrin fogging. Blood meal analysis suggested that pigs, goats, and birds were the most common sand fly blood sources, followed by humans and domestic dogs. DNA sequencing from a subsample of ITS-1 positive pools suggests that Leishmania panamensis, Leishmania naiffi, and other Leishmania spp. were the parasite species infecting the most common vectors at the study site. Our data confirm an association between sand fly species, humans, domestic dogs, and pigs and Leishmania spp. parasites in rural Panamá.

    • Supplemental Materials (PDF 46 KB)
    • Supplemental Materials (XLSX 19 KB)

Author Notes

Address correspondence to Anayansi Valderrama, Departamento de Investigaciones en Entomología Médica, Instituto Conmemorativo Gorgas de Estudios de la Salud, Avenida Justo Arosemena, calle 35, Calidonia 0816-02593, Panamá. E-mail: avalderrama@gorgas.gob.pa

Financial support: This work was supported by the Senacyt Project CCP06-040 and COL09-008; Sistema Nacional de Investigación (SNI)-SENACYT: Jose Eduardo Calzada, Azael Saldaña and Anayansi Valderrama.

Authors’ addresses: Chystrie A. Rigg, Department of Parasitology Research, Gorgas Memorial Institute of Health Studies, Panama City, Panama, and Central American Master’s Program in Entomology, University of Panama, Panama City, Panama, E-mail: chrigg@gorgas.gob.pa. José E. Calzada, Azael Saldaña, and Milixa Perea, Department of Parasitology Research, Gorgas Memorial Institute of Health Studies, Panama City, Panama. E-mails: jcalzada@gorgas.gob.pa, asaldana@gorgas.gob.pa, and mperea@gorgas.gob.pa. Luis F. Chaves, Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA), Tres Ríos, Costa Rica, and Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica, E-mail: lfchavs@gmail.com. Anayansi Valderrama, Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama, and Central American Master’s Program in Entomology, University of Panama, Panama City, Panama, E-mail: avalderrama@gorgas.gob.pa.

Save