Significance of Autophagy in Dengue Virus Infection: A Brief Review

Bishwanath Acharya Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Thailand;

Search for other papers by Bishwanath Acharya in
Current site
Google Scholar
PubMed
Close
,
Sonam Gyeltshen Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Thailand;

Search for other papers by Sonam Gyeltshen in
Current site
Google Scholar
PubMed
Close
,
Wanna Chaijaroenkul Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Thailand;

Search for other papers by Wanna Chaijaroenkul in
Current site
Google Scholar
PubMed
Close
, and
Kesara Na-Bangchang Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Thailand;
Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Thailand

Search for other papers by Kesara Na-Bangchang in
Current site
Google Scholar
PubMed
Close
Restricted access

Dengue virus (DENV) causes asymptomatic to severe life-threatening infections and affects millions of people worldwide. Autophagy, a cellular degradative pathway, has both proviral and antiviral functions. Dengue virus triggers the autophagy pathway for the successful replication of its genome. However, the exact mechanism and the viral factors involved in activating this pathway remain unclear. This review summarizes the existing knowledge on the mechanism of autophagy induction and its significance during DENV infection.

Author Notes

Address correspondence to Kesara Na-Bangchang, Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, 99 Moo 18 Paholyothin Rd., Pathum Thani 12120, Thailand. E-mail: kesaratmu@yahoo.com

Authors’ addresses: Bishwanath Acharya, Sonam Gyeltshen, and Wanna Chaijaroenkul, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Thailand, E-mails: bacharya777@gmail.com, sonamdruk2017@gmail.com, and wn_ap39@yahoo.com. Kesara Na-Bangchang, Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Thailand, E-mail: kesaratmu@yahoo.com.

  • 1.

    Kuhn RJ et al. 2002. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108: 717–725.

  • 2.

    Bhatt S et al. 2013. The global distribution and burden of dengue. Nature 496: 504–507.

  • 3.

    Gyawali N, Bradbury RS, Taylor-Robinson AW, 2016. The epidemiology of dengue infection: harnessing past experience and current knowledge to support implementation of future control strategies. J Vector Borne Dis 53: 293–304.

    • Search Google Scholar
    • Export Citation
  • 4.

    Burke DS, Nisalak A, Johnson DE, Scott RM, 1988. A prospective study of dengue infections in Bangkok. Am J Trop Med Hyg 38: 172–180.

  • 5.

    Rafique I, Saqib MAN, Munir MA, Qureshi H, Taseer IUH, Iqbal R, Ahmed W, Akhtar T, Rizwanullah S, 2017. Asymptomatic dengue infection in adults of major cities of Pakistan. Asian Pac J Trop Med 10: 1002–1006.

    • Search Google Scholar
    • Export Citation
  • 6.

    Halstead SB, 1988. Pathogenesis of dengue: challenges to molecular biology. Science 239: 476–481.

  • 7.

    Ranjit S, Kissoon N, 2011. Dengue hemorrhagic fever and shock syndromes. Pediatr Crit Care Med 12: 90–100.

  • 8.

    Acosta EG, Bartenschlager R, 2016. Paradoxical role of antibodies in dengue virus infections: considerations for prophylactic vaccine development. Expert Rev Vaccines 15: 467–482.

    • Search Google Scholar
    • Export Citation
  • 9.

    Gan ES, Ting DH, Chan KR, 2017. The mechanistic role of antibodies to dengue virus in protection and disease pathogenesis. Expert Rev Anti Infect Ther 15: 111–119.

    • Search Google Scholar
    • Export Citation
  • 10.

    Wang TT et al. 2017. IgG antibodies to dengue enhanced for FcgammaRIIIA binding determine disease severity. Science 355: 395–398.

  • 11.

    Kudchodkar SB, Levine B, 2009. Viruses and autophagy. Rev Med Virol 19: 359–378.

  • 12.

    Mizushima N, Komatsu M, 2011. Autophagy: renovation of cells and tissues. Cell 147: 728–741.

  • 13.

    Deretic V, Levine B, 2018. Autophagy balances inflammation in innate immunity. Autophagy 14: 243–251.

  • 14.

    Dreux M, Chisari FV, 2010. Viruses and the autophagy machinery. Cell Cycle 9: 1295–1307.

  • 15.

    Jordan TX, Randall G, 2012. Manipulation or capitulation: virus interactions with autophagy. Microbes Infect 14: 126–139.

  • 16.

    Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT, 2008. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182: 685–701.

    • Search Google Scholar
    • Export Citation
  • 17.

    Mizushima N, 2007. Autophagy: process and function. Genes Dev 21: 2861–2873.

  • 18.

    Glick D, Barth S, Macleod KF, 2010. Autophagy: cellular and molecular mechanisms. J Pathol 221: 3–12.

  • 19.

    Carling D, Mayer FV, Sanders MJ, Gamblin SJ, 2011. AMP-activated protein kinase: nature’s energy sensor. Nat Chem Biol 7: 512–518.

  • 20.

    Kim J, Kundu M, Viollet B, Guan KL, 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13: 132–141.

    • Search Google Scholar
    • Export Citation
  • 21.

    Jung CH, Ro S-H, Cao J, Otto NM, Kim D-H, 2010. mTOR regulation of autophagy. FEBS Lett 584: 1287–1295.

  • 22.

    Kim YC, Guan K-L, 2015. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125: 25–32.

  • 23.

    He C, Klionsky DJ, 2009. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43: 67–93.

  • 24.

    Yang Z, Klionsky DJ, 2010. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22: 124–131.

  • 25.

    Heaton NS, Randall G, 2010. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8: 422–432.

  • 26.

    Panyasrivanit M, Khakpoor A, Wikan N, Smith DR, 2009. Co-localization of constituents of the dengue virus translation and replication machinery with amphisomes. J Gen Virol 90: 448–456.

    • Search Google Scholar
    • Export Citation
  • 27.

    Wu YW, Mettling C, Wu SR, Yu CY, Perng GC, Lin YS, Lin YL, 2016. Autophagy-associated dengue vesicles promote viral transmission avoiding antibody neutralization. Sci Rep 6: 32243.

    • Search Google Scholar
    • Export Citation
  • 28.

    Khakpoor A, Panyasrivanit M, Wikan N, Smith DR, 2009. A role for autophagolysosomes in dengue virus 3 production in HepG2 cells. J Gen Virol 90: 1093–1103.

    • Search Google Scholar
    • Export Citation
  • 29.

    Lee YR, Lei HY, Liu MT, Wang JR, Chen SH, Jiang-Shieh YF, Lin YS, Yeh TM, Liu CC, Liu HS, 2008. Autophagic machinery activated by dengue virus enhances virus replication. Virology 374: 240–248.

    • Search Google Scholar
    • Export Citation
  • 30.

    Panyasrivanit M, Greenwood MP, Murphy D, Isidoro C, Auewarakul P, Smith DR, 2011. Induced autophagy reduces virus output in dengue infected monocytic cells. Virology 418: 74–84.

    • Search Google Scholar
    • Export Citation
  • 31.

    Pena J, Harris E, 2011. Dengue virus modulates the unfolded protein response in a time-dependent manner. J Biol Chem 286: 14226–14236.

  • 32.

    Datan E, Roy SG, Germain G, Zali N, McLean JE, Golshan G, Harbajan S, Lockshin RA, Zakeri Z, 2016. Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell Death Dis 7: e2127.

    • Search Google Scholar
    • Export Citation
  • 33.

    Lee YR, Kuo SH, Lin CY, Fu PJ, Lin YS, Yeh TM, Liu HS, 2018. Dengue virus-induced ER stress is required for autophagy activation, viral replication, and pathogenesis both in vitro and in vivo. Sci Rep 8: 489.

    • Search Google Scholar
    • Export Citation
  • 34.

    Margariti A et al. 2013. XBP1 mRNA splicing triggers an autophagic response in endothelial cells through BECLIN-1 transcriptional activation. J Biol Chem 288: 859–872.

    • Search Google Scholar
    • Export Citation
  • 35.

    Kamimura D, Bevan MJ, 2008. Endoplasmic reticulum stress regulator XBP-1 contributes to effector CD8+ T cell differentiation during acute infection. J Immunol 181: 5433–5441.

    • Search Google Scholar
    • Export Citation
  • 36.

    Kaser A et al. 2008. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134: 743–756.

    • Search Google Scholar
    • Export Citation
  • 37.

    Shiloh Y, Ziv Y, 2013. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14: 197.

    • Search Google Scholar
    • Export Citation
  • 38.

    Alexander A et al. 2010. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci USA 107: 4153–4158.

    • Search Google Scholar
    • Export Citation
  • 39.

    Alexander A, Kim J, Walker CL, 2010. ATM engages the TSC2/mTORC1 signaling node to regulate autophagy. Autophagy 6: 672–673.

  • 40.

    Jordan TX, Randall G, 2017. Dengue virus activates the AMP kinase-mTOR axis to stimulate a proviral lipophagy. J Virol 91: e02020–16.

  • 41.

    Russell RC, Tian Y, Yuan H, Park HW, Chang Y-Y, Kim J, Kim H, Neufeld TP, Dillin A, Guan K-L, 2013. ULK1 induces autophagy by phosphorylating Beclin-1 and activating Vps34 lipid kinase. Nat Cell Biol 15: 741–750.

    • Search Google Scholar
    • Export Citation
  • 42.

    Zaffagnini G, Martens S, 2016. Mechanisms of selective autophagy. J Mol Biol 428: 1714–1724.

  • 43.

    Metz P, Chiramel A, Chatel-Chaix L, Alvisi G, Bankhead P, Mora-Rodriguez R, Long G, Hamacher-Brady A, Brady NR, Bartenschlager R, 2015. Dengue virus inhibition of autophagic flux and dependency of viral replication on proteasomal degradation of the autophagy receptor p62. J Virol 89: 8026–8041.

    • Search Google Scholar
    • Export Citation
  • 44.

    Chen H-R, Chuang Y-C, Chao C-H, Yeh T-M, 2015. Macrophage migration inhibitory factor induces vascular leakage via autophagy. Biol Open 4: 244–252.

    • Search Google Scholar
    • Export Citation
  • 45.

    Chuang Y-C, Lei H-Y, Liu H-S, Lin Y-S, Fu T-F, Yeh T-M, 2011. Macrophage migration inhibitory factor induced by dengue virus infection increases vascular permeability. Cytokine 54: 222–231.

    • Search Google Scholar
    • Export Citation
  • 46.

    Beatty PR, Puerta-Guardo H, Killingbeck SS, Glasner DR, Hopkins K, Harris E, 2015. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci Transl Med 7: 304ra141.

    • Search Google Scholar
    • Export Citation
  • 47.

    Calandra T, Bernhagen J, Mitchell RA, Bucala R, 1994. The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J Exp Med 179: 1895–1902.

    • Search Google Scholar
    • Export Citation
  • 48.

    Modhiran N, Watterson D, Muller DA, Panetta AK, Sester DP, Liu L, Hume DA, Stacey KJ, Young PR, 2015. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med 7: 304ra142.

    • Search Google Scholar
    • Export Citation
  • 49.

    Chen HR, Chuang YC, Lin YS, Liu HS, Liu CC, Perng GC, Yeh TM, 2016. Dengue virus nonstructural protein 1 induces vascular leakage through macrophage migration inhibitory factor and autophagy. PLoS Negl Trop Dis 10: e0004828.

    • Search Google Scholar
    • Export Citation
  • 50.

    McLean JE, Wudzinska A, Datan E, Quaglino D, Zakeri Z, 2011. Flavivirus NS4A-induced autophagy protects cells against death and enhances virus replication. J Biol Chem 286: 22147–22159.

    • Search Google Scholar
    • Export Citation
  • 51.

    Mateo R, Nagamine CM, Spagnolo J, Mendez E, Rahe M, Gale M Jr., Yuan J, Kirkegaard K, 2013. Inhibition of cellular autophagy deranges dengue virion maturation. J Virol 87: 1312–1321.

    • Search Google Scholar
    • Export Citation
  • 52.

    Huang X et al. 2016. Antibody-dependent enhancement of dengue virus infection inhibits RLR-mediated Type-I IFN-independent signalling through upregulation of cellular autophagy. Sci Rep 6: 22303.

    • Search Google Scholar
    • Export Citation
  • 53.

    Fang YT, Wan SW, Lu YT, Yao JH, Lin CF, Hsu LJ, Brown MG, Marshall JS, Anderson R, Lin YS, 2014. Autophagy facilitates antibody-enhanced dengue virus infection in human pre-basophil/mast cells. PLoS One 9: e110655.

    • Search Google Scholar
    • Export Citation
  • 54.

    Lee YR, Hu HY, Kuo SH, Lei HY, Lin YS, Yeh TM, Liu CC, Liu HS, 2013. Dengue virus infection induces autophagy: an in vivo study. J Biomed Sci 20: 65.

  • 55.

    Dash S, Chava S, Aydin Y, Chandra PK, Ferraris P, Chen W, Balart LA, Wu T, Garry RF, 2016. Hepatitis C virus infection induces autophagy as a prosurvival mechanism to alleviate hepatic ER-stress response. Viruses 8: 150.

    • Search Google Scholar
    • Export Citation
  • 56.

    Lazar C, Uta M, Branza-Nichita N, 2014. Modulation of the unfolded protein response by the human hepatitis B virus. Front Microbiol 5: 433.

  • 57.

    Ke PY, Chen SS, 2011. Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro. J Clin Invest 121: 37–56.

    • Search Google Scholar
    • Export Citation
  • 58.

    Dreux M, Chisari FV, 2009. Autophagy proteins promote hepatitis C virus replication. Autophagy 5: 1224–1225.

  • 59.

    Hsieh SC, Wu YC, Zou G, Nerurkar VR, Shi PY, Wang WK, 2014. Highly conserved residues in the helical domain of dengue virus type 1 precursor membrane protein are involved in assembly, precursor membrane (prM) protein cleavage, and entry. J Biol Chem 289: 33149–33160.

    • Search Google Scholar
    • Export Citation
  • 60.

    Chukkapalli V, Heaton NS, Randall G, 2012. Lipids at the interface of virus–host interactions. Curr Opin Microbiol 15: 512–518.

  • 61.

    Moser TS, Schieffer D, Cherry S, 2012. AMP-activated kinase restricts Rift Valley fever virus infection by inhibiting fatty acid synthesis. PLoS Pathog 8: e1002661.

    • Search Google Scholar
    • Export Citation
  • 62.

    Mankouri J, Tedbury PR, Gretton S, Hughes ME, Griffin SDC, Dallas ML, Green KA, Hardie DG, Peers C, Harris M, 2010. Enhanced hepatitis C virus genome replication and lipid accumulation mediated by inhibition of AMP-activated protein kinase. Proc Natl Acad Sci USA 107: 11549–11554.

    • Search Google Scholar
    • Export Citation
  • 63.

    Heaton NS, Perera R, Berger KL, Khadka S, Lacount DJ, Kuhn RJ, Randall G, 2010. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad Sci USA 107: 17345–17350.

    • Search Google Scholar
    • Export Citation
  • 64.

    McArdle J, Moorman NJ, Munger J, 2012. HCMV targets the metabolic stress response through activation of AMPK whose activity is important for viral replication. PLoS Patho 8: e1002502.

    • Search Google Scholar
    • Export Citation
  • 65.

    Zhang HT, Chen GG, Hu BG, Zhang ZY, Yun JP, He ML, Lai PB, 2014. Hepatitis B virus x protein induces autophagy via activating death-associated protein kinase. J Viral Hepat 21: 642–649.

    • Search Google Scholar
    • Export Citation
  • 66.

    Hung CH et al. 2014. Regulation of autophagic activation by Rta of Epstein-Barr virus via the extracellular signal-regulated kinase pathway. J Virol 88: 12133–12145.

    • Search Google Scholar
    • Export Citation
  • 67.

    Kumar SH, Rangarajan A, 2009. Simian virus 40 small T antigen activates AMPK and triggers autophagy to protect cancer cells from nutrient deprivation. J Virol 83: 8565–8574.

    • Search Google Scholar
    • Export Citation
  • 68.

    Wang L, Ou J-hJ, 2015. Hepatitis C virus and autophagy. Biol Chemistry 396: 1215–1222.

  • 69.

    Pu J, Wu S, Xie H, Li Y, Yang Z, Wu X, Huang X, 2017. miR-146a inhibits dengue-virus-induced autophagy by targeting TRAF6. Arch Virol 162: 3645–3659.

Past two years Past Year Past 30 Days
Abstract Views 106 106 19
Full Text Views 1380 274 0
PDF Downloads 516 102 0
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save