• 1.

    Prasad N, Murdoch DR, Reyburn H, Crump JA, 2015. Etiology of severe febrile illness in low- and middle-income countries: a systematic review. PLoS One 10: e0127962.

    • Search Google Scholar
    • Export Citation
  • 2.

    Crump JA, Kirk MD, 2015. Estimating the burden of febrile illnesses. PLoS Negl Trop Dis 9: e0004040.

  • 3.

    Suaya JA et al. 2009. Cost of dengue cases in eight countries in the Americas and Asia: a prospective study. Am J Trop Med Hyg 80: 846855.

  • 4.

    Tomashek KM et al. 2017. Clinical and epidemiologic characteristics of dengue and other etiologic agents among patients with acute febrile illness, Puerto Rico, 2012–2015. PLoS Negl Trop Dis 11: e0005859.

    • Search Google Scholar
    • Export Citation
  • 5.

    Pappas G, Papadimitriou P, Siozopoulou V, Christou L, Akritidis N, 2008. The globalization of leptospirosis: worldwide incidence trends. Int J Infect Dis 12: 351357.

    • Search Google Scholar
    • Export Citation
  • 6.

    Chierakul W, 2014. Leptospirosis. Farrar J, Junghanss J, Lalloo D, Hotez PJ, Kang G, White NJ, eds. Manson’s Tropical Diseases. 23rd ed. China: Elsevier, 433440.

    • Search Google Scholar
    • Export Citation
  • 7.

    Suputtamongkol Y, Suttinont C, Niwatayakul K, Hoontrakul S, Limpaiboon R, Chierakul W, Losuwanaluk K, Saisongkork W, 2009. Epidemiology and clinical aspects of rickettsioses in Thailand. Ann N Y Acad Sci 1166: 172179.

    • Search Google Scholar
    • Export Citation
  • 8.

    McGready R et al. 2010. Arthropod borne disease: the leading cause of fever in pregnancy on the Thai-Burmese border. PLoS Negl Trop Dis 4: e888.

  • 9.

    Hamaguchi S et al. 2015. Clinical and epidemiological characteristics of scrub typhus and murine typhus among hospitalized patients with acute undifferentiated fever in northern Vietnam. Am J Trop Med Hyg 92: 972978.

    • Search Google Scholar
    • Export Citation
  • 10.

    Manock SR et al. 2009. Etiology of acute undifferentiated febrile illness in the Amazon basin of Ecuador. Am J Trop Med Hyg 81: 146151.

  • 11.

    Naing C, Kassim AI, 2012. Scaling-up attention to nonmalaria acute undifferentiated fever. Trans R Soc Trop Med Hyg 106: 331332.

  • 12.

    Phuong HL, de Vries PJ, Nagelkerke N, Giao PT, Hung le Q, Binh TQ, Nga TT, Nam NV, Kager PA, 2006. Acute undifferentiated fever in Binh Thuan province, Vietnam: imprecise clinical diagnosis and irrational pharmaco-therapy. Trop Med Int Health 11: 869879.

    • Search Google Scholar
    • Export Citation
  • 13.

    Thipmontree W, Suputtamongkol Y, Tantibhedhyangkul W, Suttinont C, Wongswat E, Silpasakorn S, 2014. Human leptospirosis trends: northeast Thailand, 2001–2012. Int J Environ Res Public Health 11: 85428551.

    • Search Google Scholar
    • Export Citation
  • 14.

    Leelarasamee A, Chupaprawan C, Chenchittikul M, Udompanthurat S, 2004. Etiologies of acute undifferentiated febrile illness in Thailand. J Med Assoc Thai 87: 464472.

    • Search Google Scholar
    • Export Citation
  • 15.

    Suttinont C et al. 2006. Causes of acute, undifferentiated, febrile illness in rural Thailand: results of a prospective observational study. Ann Trop Med Parasitol 100: 363370.

    • Search Google Scholar
    • Export Citation
  • 16.

    Ellis RD et al. 2006. Causes of fever in adults on the Thai-Myanmar border. Am J Trop Med Hyg 74: 108113.

  • 17.

    World Health Organization, 1997. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. Available at: http://apps.who.int/iris/bitstream/handle/10665/41988/9241545003_eng.pdf. Accessed June 17, 2018.

    • Search Google Scholar
    • Export Citation
  • 18.

    Kotepui M, PhunPhuech B, Phiwklam N, Uthaisar K, Thirarattanasunthon P, 2017. Prevalence of scrub typhus infection among patients infected with malaria in Phop Phra Hospital, Tak province, Thailand. J Med Tech Assoc Thailand 45: 59095916.

    • Search Google Scholar
    • Export Citation
  • 19.

    Chansamouth V et al. 2016. The aetiologies and impact of fever in pregnant inpatients in Vientiane, Laos. PLoS Negl Trop Dis 10: e0004577.

  • 20.

    Brownlow T, Kavanagh OV, Logan EF, Hartskeerl RA, Savage R, Palmer MF, Krahl M, Mackie DP, Ellis WA, 2014. ‘Leptorapide’–a one-step assay for rapid diagnosis of human leptospirosis. Epidemiol Infect 142: 11821187.

    • Search Google Scholar
    • Export Citation
  • 21.

    Surase PV, Nataraj G, Pattamadai K, Mehta PR, Pazare AR, Agarwal MC, Nanavati RN, 2016. An appropriately performed conventional blood culture can facilitate choice of therapy in resource-constrained settings-comparison with BACTEC 9050. J Postgrad Med 62: 228234.

    • Search Google Scholar
    • Export Citation
  • 22.

    Isenberg HI, 1998. Essential Procedures for Clinical Microbiology. Washington, DC: ASM Press.

  • 23.

    Johnson BW, Russell BJ, Lanciotti RS, 2005. Serotype-specific detection of dengue viruses in a fourplex real-time reverse transcriptase PCR assay. J Clin Microbiol 43: 49774983.

    • Search Google Scholar
    • Export Citation
  • 24.

    Nga TT, Thai KT, Phuong HL, Giao PT, Hung le Q, Binh TQ, Mai VT, Van Nam N, de Vries PJ, 2007. Evaluation of two rapid immunochromatographic assays for diagnosis of dengue among Vietnamese febrile patients. Clin Vaccine Immunol 14: 799801.

    • Search Google Scholar
    • Export Citation
  • 25.

    World Health Organization, 2009. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. Available at: http://www.who.int/tdr/publications/documents/dengue-diagnosis.pdf. Accessed April 12, 2018.

    • Search Google Scholar
    • Export Citation
  • 26.

    Innis BL, Nisalak A, Nimmannitya S, Kusalerdchariya S, Chongswasdi V, Suntayakorn S, Puttisri P, Hoke CH, 1989. An enzyme-linked immunosorbent assay to characterize dengue infections where dengue and Japanese encephalitis co-circulate. Am J Trop Med Hyg 40: 418427.

    • Search Google Scholar
    • Export Citation
  • 27.

    Stenos J, Graves SR, Unsworth NB, 2005. A highly sensitive and specific real-time PCR assay for the detection of spotted fever and typhus group Rickettsiae. Am J Trop Med Hyg 73: 10831085.

    • Search Google Scholar
    • Export Citation
  • 28.

    Sonthayanon P, Chierakul W, Wuthiekanun V, Phimda K, Pukrittayakamee S, Day NP, Peacock SJ, 2009. Association of high Orientia tsutsugamushi DNA loads with disease of greater severity in adults with scrub typhus. J Clin Microbiol 47: 430434.

    • Search Google Scholar
    • Export Citation
  • 29.

    Smythe LD, Smith IL, Smith GA, Dohnt MF, Symonds ML, Barnett LJ, McKay DB, 2002. A quantitative PCR (TaqMan) assay for pathogenic Leptospira spp. BMC Infect Dis 2: 13.

    • Search Google Scholar
    • Export Citation
  • 30.

    Sittiwangkul R, Pongprot Y, Silviliarat S, Oberdorfer P, Jittamala P, Sirisanthana V, 2008. Acute fulminant myocarditis in scrub typhus. Ann Trop Paediatr 28: 149154.

    • Search Google Scholar
    • Export Citation
  • 31.

    Crump JA et al. 2013. Etiology of severe non-malaria febrile illness in northern Tanzania: a prospective cohort study. PLoS Negl Trop Dis 7: e2324.

    • Search Google Scholar
    • Export Citation
  • 32.

    Reller ME, Chikeka I, Miles JJ, Dumler JS, Woods CW, Mayorga O, Matute AJ, 2016. First identification and description of rickettsioses and Q fever as causes of acute febrile illness in Nicaragua. PLoS Negl Trop Dis 10: e0005185.

    • Search Google Scholar
    • Export Citation
  • 33.

    Chimsumang S, Chettanadee S, Jitrathai S, Wongchotigul V, 2005. Indirect immunoperoxidase test for the diagnosis of leptospirosis. Southeast Asian J Trop Med Public Health 36: 296301.

    • Search Google Scholar
    • Export Citation
  • 34.

    World Health Organization, 2013. Laboratory Procedures: Serological Detection of Avian Influenza A(H7N9) Infections by Microneutralization Assay. Available at: http://www.who.int/influenza/gisrs_laboratory/cnic_serological_diagnosis_microneutralization_a_h7n9.pdf. Accessed September 11, 2018.

    • Search Google Scholar
    • Export Citation
  • 35.

    Parker TM, Murray CK, Richards AL, Samir A, Ismail T, Fadeel MA, Jiang J, Wasfy MO, Pimentel G, 2007. Concurrent infections in acute febrile illness patients in Egypt. Am J Trop Med Hyg 77: 390392.

    • Search Google Scholar
    • Export Citation
  • 36.

    Bharaj P, Chahar HS, Pandey A, Diddi K, Dar L, Guleria R, Kabra SK, Broor S, 2008. Concurrent infections by all four dengue virus serotypes during an outbreak of dengue in 2006 in Delhi, India. Virol J 5: 1.

    • Search Google Scholar
    • Export Citation
  • 37.

    Dhanoa A, Hassan SS, Ngim CF, Lau CF, Chan TS, Adnan NA, Eng WW, Gan HM, Rajasekaram G, 2016. Impact of dengue virus (DENV) co-infection on clinical manifestations, disease severity and laboratory parameters. BMC Infect Dis 16: 406.

    • Search Google Scholar
    • Export Citation
  • 38.

    Suputtamongkol Y et al. 2010. Strategies for diagnosis and treatment of suspected leptospirosis: a cost-benefit analysis. PLoS Negl Trop Dis 4: e610.

    • Search Google Scholar
    • Export Citation
  • 39.

    Phimda K et al. 2007. Doxycycline versus azithromycin for treatment of leptospirosis and scrub typhus. Antimicrob Agents Chemother 51: 32593263.

    • Search Google Scholar
    • Export Citation
  • 40.

    Libraty DH et al. 2007. A comparative study of leptospirosis and dengue in Thai children. PLoS Negl Trop Dis 1: e111.

  • 41.

    Pok KY, Lai YL, Sng J, Ng LC, 2010. Evaluation of nonstructural 1 antigen assays for the diagnosis and surveillance of dengue in Singapore. Vector Borne Zoonotic Dis 10: 10091016.

    • Search Google Scholar
    • Export Citation
  • 42.

    Pal S, Dauner AL, Mitra I, Forshey BM, Garcia P, Morrison AC, Halsey ES, Kochel TJ, Wu SJ, 2014. Evaluation of dengue NS1 antigen rapid tests and ELISA kits using clinical samples. PLoS One 9: e113411.

    • Search Google Scholar
    • Export Citation
  • 43.

    Potts JA, Rothman AL, 2008. Clinical and laboratory features that distinguish dengue from other febrile illnesses in endemic populations. Trop Med Int Health 13: 13281340.

    • Search Google Scholar
    • Export Citation
  • 44.

    Tanner L et al. 2008. Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness. PLoS Negl Trop Dis 2: e196.

    • Search Google Scholar
    • Export Citation
  • 45.

    Low JG et al. 2011. The early clinical features of dengue in adults: challenges for early clinical diagnosis. PLoS Negl Trop Dis 5: e1191.

  • 46.

    Daumas RP, Passos SR, Oliveira RV, Nogueira RM, Georg I, Marzochi KB, Brasil P, 2013. Clinical and laboratory features that discriminate dengue from other febrile illnesses: a diagnostic accuracy study in Rio de Janeiro, Brazil. BMC Infect Dis 13: 77.

    • Search Google Scholar
    • Export Citation
  • 47.

    Ho TS, Wang SM, Lin YS, Liu CC, 2013. Clinical and laboratory predictive markers for acute dengue infection. J Biomed Sci 20: 75.

  • 48.

    Thanachartwet V, Oer-Areemitr N, Chamnanchanunt S, Sahassananda D, Jittmittraphap A, Suwannakudt P, Desakorn V, Wattanathum A, 2015. Identification of clinical factors associated with severe dengue among Thai adults: a prospective study. BMC Infect Dis 15: 420.

    • Search Google Scholar
    • Export Citation
  • 49.

    Gregory CJ et al. 2011. Utility of the tourniquet test and the white blood cell count to differentiate dengue among acute febrile illnesses in the emergency room. PLoS Negl Trop Dis 5: e1400.

    • Search Google Scholar
    • Export Citation
  • 50.

    Civen R, Ngo V, 2008. Murine typhus: an unrecognized suburban vectorborne disease. Clin Infect Dis 46: 913918.

  • 51.

    Jampangern W, Vongthoung K, Jittmittraphap A, Worapongpaiboon S, Limkittikul K, Chuansumrit A, Tarunotai U, Chongsa-nguan M, 2007. Characterization of atypical lymphocytes and immunophenotypes of lymphocytes in patients with dengue virus infection. Asian Pac J Allergy Immunol 25: 2736.

    • Search Google Scholar
    • Export Citation
  • 52.

    Treeprasertsuk S, Kittitrakul C, 2015. Liver complications in adult dengue and current management. Southeast Asian J Trop Med Public Health 46 (Suppl 1): 99107.

    • Search Google Scholar
    • Export Citation
  • 53.

    Kittitrakul C, Silachamroon U, Phumratanaprapin W, Krudsood S, Wilairatana P, Treeprasertsuk S, 2015. Liver function tests abnormality and clinical severity of dengue infection in adult patients. J Med Assoc Thai 98 (Suppl 1): S1S8.

    • Search Google Scholar
    • Export Citation
  • 54.

    Sa-Ngamuang C, Haddawy P, Luvira V, Piyaphanee W, Iamsirithaworn S, Lawpoolsri S, 2018. Accuracy of dengue clinical diagnosis with and without NS1 antigen rapid test: comparison between human and Bayesian network model decision. PLoS Negl Trop Dis 12: e0006573.

    • Search Google Scholar
    • Export Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Etiologies of Acute Undifferentiated Febrile Illness in Bangkok, Thailand

View More View Less
  • 1 Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand;
  • | 2 Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand;
  • | 3 Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand;
  • | 4 Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand;
  • | 5 Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
Restricted access

Acute undifferentiated febrile illness (AUFI) has been a diagnostic dilemma in the tropics. Without accurate point-of-care tests, information on local pathogens and clinical parameters is essential for presumptive diagnosis. A prospective hospital-based study was conducted at the Bangkok Hospital for Tropical Diseases from 2013 to 2015 to determine common etiologies of AUFI. A total of 397 adult AUFI cases, excluding malaria by blood smear, were enrolled. Rapid diagnostic tests for tropical infections were performed on admission, and acute and convalescent samples were tested to confirm the diagnosis. Etiologies could be identified in 271 (68.3%) cases. Dengue was the most common cause, with 157 cases (39.6%), followed by murine typhus (20 cases; 5.0%), leptospirosis (16 cases; 4.0%), influenza (14 cases; 3.5%), and bacteremia (six cases; 1.5%). Concurrent infection by at least two pathogens was reported in 37 cases (9.3%). Furthermore, characteristics of dengue and bacterial infections (including leptospirosis and rickettsioses) were compared to facilitate dengue triage, initiate early antibiotic treatment, and minimize unnecessary use of antibiotics. In conclusion, dengue was the most common pathogen for AUFI in urban Thailand. However, murine typhus and leptospirosis were not uncommon. Empirical antibiotic treatment using doxycycline or azithromycin might be more appropriate, but cost–benefit studies are required. Physicians should recognize common causes of AUFI in their localities and use clinical and laboratory clues for provisional diagnosis to provide appropriate treatment while awaiting laboratory confirmation.

Author Notes

Address correspondence to Udomsak Silachamroon, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd., Ratchathewi, Bangkok 10400, Thailand. E-mail: udomsak.sil@mahidol.ac.th

Financial support: This study was supported by research fund from the Faculty of Tropical Medicine, Mahidol University, Fiscal Year 2012, Dean’s Research Fund 2012, and ICTM grant from the Faculty of Tropical Medicine, Mahidol University. The publication was also granted by the Faculty of Tropical Medicine, Mahidol University.

Disclaimer: Parts of this work were presented as a poster presentation in Joint International Tropical Medicine Meeting (JITMM) 2015, Bangkok, Thailand, and the 2nd International Meeting on Arboviruses and Their Vectors (IMAV) 2017, Glasgow, United Kingdom.

Authors’ addresses: Viravarn Luvira, Udomsak Silachamroon, Watcharapong Piyaphanee, and Yupaporn Wattanagoon, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, E-mails: viravarn.luv@mahidol.ac.th, udomsak.sil@mahidol.ac.th, watcharapong.piy@mahidol.ac.th, and yupaporn.wat@mahidol.ac.th. Saranath Lawpoolsri, Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, E-mail: saranath.law@mahidol.ac.th. Wirongrong Chierakul, Department of Clinical Tropical Medicine and Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, E-mail: wirongrong.chi@mahidol.ac.th. Pornsawan Leaungwutiwong, Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, E-mail: pornsawan.lea@mahidol.ac.th. Charin Thawornkuno, Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, E-mail: charin.tha@mahidol.ac.th.

Save