• 1.

    Grubaugh ND et al. 2017. Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 546: 401405.

  • 2.

    Johnson TL et al. 2017. Modeling the environmental suitability for Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the contiguous United States. J Med Entomol 54: 16051614.

    • Search Google Scholar
    • Export Citation
  • 3.

    Hahn MB, Eisen RJ, Eisen L, Boegler KA, Moore CG, McAllister J, Savage HM, Mutebi J-P, 2016. Reported distribution of Aedes (Stegomyia ) aegypti and Aedes (Stegomyia ) albopictus in the United States, 1995–2016 (Diptera: Culicidae). J Med Entomol 53: 11691175.

    • Search Google Scholar
    • Export Citation
  • 4.

    Monaghan AJ et al. 2016. On the seasonal occurrence and abundance of the Zika virus vector mosquito Aedes aegypti in the contiguous United States. PLoS Curr 8: e50dfc7f46798675fc63e7d7da563da76.

    • Search Google Scholar
    • Export Citation
  • 5.

    Eisen L, Moore CG, 2013. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range. J Med Entomol 50: 467478.

    • Search Google Scholar
    • Export Citation
  • 6.

    Morin CW, Comrie AC, Ernst K, 2013. Climate and dengue transmission: evidence and implications. Environ Health Perspect 121: 12641272.

  • 7.

    Focks DA, Haile DG, Daniels E, Mount GA, 1993. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): analysis of the literature and model development. J Med Entomol 30: 10031017.

    • Search Google Scholar
    • Export Citation
  • 8.

    Morin CW, Monaghan AJ, Hayden MH, Barrera R, Ernst K, 2015. Meteorologically driven simulations of dengue epidemics in San Juan, PR. PLoS Negl Trop Dis 9: e0004002.

    • Search Google Scholar
    • Export Citation
  • 9.

    Xu C, Legros M, Gould F, Lloyd AL, 2010. Understanding uncertainties in model-based predictions of Aedes aegypti population dynamics. PLoS Negl Trop Dis 4: e830.

    • Search Google Scholar
    • Export Citation
  • 10.

    Reiskind MH, Lounibos LP, 2013. Spatial and temporal patterns of abundance of Aedes aegypti L. (Stegomyia aegypti) and Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] in southern Florida. Med Vet Entomol 27: 421429.

    • Search Google Scholar
    • Export Citation
  • 11.

    Sukumaran D, 2016. A review on use of attractants and traps for host seeking Aedes aegypti mosquitoes. Indian J Nat Prod Resour IJNPR Former Nat Prod Radiance NPR 7: 207214.

    • Search Google Scholar
    • Export Citation
  • 12.

    Cosgrove BA et al. 2003. Real-time and retrospective forcing in the North American land data assimilation system (NLDAS) project. J Geophys Res Atmospheres 108: 8842.

    • Search Google Scholar
    • Export Citation
  • 13.

    Eisen L, Monaghan AJ, Lozano-Fuentes S, Steinhoff DF, Hayden MH, Bieringer PE, 2014. The impact of temperature on the bionomics of Aedes (Stegomyia) aegypti, with special reference to the cool geographic range margins. J Med Entomol 51: 496516.

    • Search Google Scholar
    • Export Citation
  • 14.

    Pless E, Gloria-Soria A, Evans BR, Kramer V, Bolling BG, Tabachnick WJ, Powell JR, 2017. Multiple introductions of the dengue vector, Aedes aegypti, into California. PLoS Negl Trop Dis 11: e0005718.

    • Search Google Scholar
    • Export Citation
  • 15.

    Kearney M, Porter WP, Williams C, Ritchie S, Hoffmann AA, 2009. Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia. Funct Ecol 23: 528538.

    • Search Google Scholar
    • Export Citation
  • 16.

    Brady OJ et al. 2014. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasit Vectors 7: 338.

    • Search Google Scholar
    • Export Citation
  • 17.

    Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW, 2011. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci U S A 108: 74607465.

    • Search Google Scholar
    • Export Citation
  • 18.

    Hayden MH, Cavanaugh JL, Tittel C, Butterworth M, Haenchen S, Dickinson K, Monaghan AJ, Ernst KC, 2015. Post outbreak review: dengue preparedness and response in Key West, Florida. Am J Trop Med Hyg 93: 397400.

    • Search Google Scholar
    • Export Citation
 
 
 

 

 
 
 

 

 

 

 

 

 

A Simple Model to Predict the Potential Abundance of Aedes aegypti Mosquitoes One Month in Advance

View More View Less
  • 1 University of Colorado Boulder, Boulder, Colorado;
  • | 2 National Center for Atmospheric Research, Boulder, Colorado;
  • | 3 University of Colorado Colorado Springs, Colorado Springs, Colorado;
  • | 4 Maricopa County Environmental Services Vector Control Department, Phoenix, Arizona;
  • | 5 Department of Entomology, North Carolina State University, Raleigh, North Carolina;
  • | 6 Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona

The mosquito Aedes (Stegomyia) aegypti (L.) is the primary vector of dengue, chikungunya, and Zika viruses in the United States. Surveillance for adult Ae. aegypti is limited, hindering understanding of the mosquito’s seasonal patterns and predictions of areas at elevated risk for autochthonous virus transmission. We developed a simple, intuitive empirical model that uses readily available temperature and humidity variables to predict environmental suitability for low, medium, or high potential abundance of adult Ae. aegypti in a given city 1 month in advance. Potential abundance was correctly predicted in 73% of months in arid Phoenix, AZ (over a 10-year period), and 63% of months in humid Miami, FL (over a 2-year period). The monthly model predictions can be updated daily, weekly, or monthly and thus may be applied to forecast suitable conditions for Ae. aegypti to inform vector-control activities and guide household-level actions to reduce mosquito habitat and human exposure.

    • Supplemental Materials (PDF 390 KB)
    • Supplemental Materials (PDF 687 KB)
    • Supplemental Materials (PDF 130 KB)

Author Notes

Address correspondence to Andrew J. Monaghan, University of Colorado Boulder, 597 P.O. Box 3000, Boulder, CO 80309. E-mail: andrew.monaghan@colorado.edu

Financial support: This work was funded by NASA Grant NNX16AO98G. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Authors’ addresses: Andrew J. Monaghan, University of Colorado Boulder, Boulder, CO, E-mail: andrew.monaghan@colorado.edu. Christopher A. Schmidt and Ryan Cabell, National Center for Atmospheric Research, Boulder, CO, E-mails: casch@ucar.edu and rcabell@ucar.edu. Mary H. Hayden, University of Colorado Colorado Springs, Colorado Springs, CO, E-mail: mhayden@uccs.edu. Kirk A. Smith, Maricopa County Environmental Services Vector Control Department, Phoenix, AZ, E-mail: ksmith@mail.maricopa.gov. Michael H. Reiskind, Department of Entomology, North Carolina State University, Raleigh, NC, E-mail: mhreiski@ncsu.edu. Kacey C. Ernst, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, E-mail: kernst@email.arizona.edu.

Save