Grubaugh ND et al. 2017. Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 546: 401–405.
Johnson TL et al. 2017. Modeling the environmental suitability for Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the contiguous United States. J Med Entomol 54: 1605–1614.
Hahn MB, Eisen RJ, Eisen L, Boegler KA, Moore CG, McAllister J, Savage HM, Mutebi J-P, 2016. Reported distribution of Aedes (Stegomyia ) aegypti and Aedes (Stegomyia ) albopictus in the United States, 1995–2016 (Diptera: Culicidae). J Med Entomol 53: 1169–1175.
Monaghan AJ et al. 2016. On the seasonal occurrence and abundance of the Zika virus vector mosquito Aedes aegypti in the contiguous United States. PLoS Curr 8: e50dfc7f46798675fc63e7d7da563da76.
Eisen L, Moore CG, 2013. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range. J Med Entomol 50: 467–478.
Morin CW, Comrie AC, Ernst K, 2013. Climate and dengue transmission: evidence and implications. Environ Health Perspect 121: 1264–1272.
Focks DA, Haile DG, Daniels E, Mount GA, 1993. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): analysis of the literature and model development. J Med Entomol 30: 1003–1017.
Morin CW, Monaghan AJ, Hayden MH, Barrera R, Ernst K, 2015. Meteorologically driven simulations of dengue epidemics in San Juan, PR. PLoS Negl Trop Dis 9: e0004002.
Xu C, Legros M, Gould F, Lloyd AL, 2010. Understanding uncertainties in model-based predictions of Aedes aegypti population dynamics. PLoS Negl Trop Dis 4: e830.
Reiskind MH, Lounibos LP, 2013. Spatial and temporal patterns of abundance of Aedes aegypti L. (Stegomyia aegypti) and Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] in southern Florida. Med Vet Entomol 27: 421–429.
Sukumaran D, 2016. A review on use of attractants and traps for host seeking Aedes aegypti mosquitoes. Indian J Nat Prod Resour IJNPR Former Nat Prod Radiance NPR 7: 207–214.
Cosgrove BA et al. 2003. Real-time and retrospective forcing in the North American land data assimilation system (NLDAS) project. J Geophys Res Atmospheres 108: 8842.
Eisen L, Monaghan AJ, Lozano-Fuentes S, Steinhoff DF, Hayden MH, Bieringer PE, 2014. The impact of temperature on the bionomics of Aedes (Stegomyia) aegypti, with special reference to the cool geographic range margins. J Med Entomol 51: 496–516.
Pless E, Gloria-Soria A, Evans BR, Kramer V, Bolling BG, Tabachnick WJ, Powell JR, 2017. Multiple introductions of the dengue vector, Aedes aegypti, into California. PLoS Negl Trop Dis 11: e0005718.
Kearney M, Porter WP, Williams C, Ritchie S, Hoffmann AA, 2009. Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia. Funct Ecol 23: 528–538.
Brady OJ et al. 2014. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasit Vectors 7: 338.
Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW, 2011. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci U S A 108: 7460–7465.
Hayden MH, Cavanaugh JL, Tittel C, Butterworth M, Haenchen S, Dickinson K, Monaghan AJ, Ernst KC, 2015. Post outbreak review: dengue preparedness and response in Key West, Florida. Am J Trop Med Hyg 93: 397–400.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 475 | 355 | 62 |
Full Text Views | 983 | 15 | 2 |
PDF Downloads | 225 | 18 | 4 |
The mosquito Aedes (Stegomyia) aegypti (L.) is the primary vector of dengue, chikungunya, and Zika viruses in the United States. Surveillance for adult Ae. aegypti is limited, hindering understanding of the mosquito’s seasonal patterns and predictions of areas at elevated risk for autochthonous virus transmission. We developed a simple, intuitive empirical model that uses readily available temperature and humidity variables to predict environmental suitability for low, medium, or high potential abundance of adult Ae. aegypti in a given city 1 month in advance. Potential abundance was correctly predicted in 73% of months in arid Phoenix, AZ (over a 10-year period), and 63% of months in humid Miami, FL (over a 2-year period). The monthly model predictions can be updated daily, weekly, or monthly and thus may be applied to forecast suitable conditions for Ae. aegypti to inform vector-control activities and guide household-level actions to reduce mosquito habitat and human exposure.
Financial support: This work was funded by NASA Grant NNX16AO98G. The National Center for Atmospheric Research is sponsored by the National Science Foundation.
Authors’ addresses: Andrew J. Monaghan, University of Colorado Boulder, Boulder, CO, E-mail: andrew.monaghan@colorado.edu. Christopher A. Schmidt and Ryan Cabell, National Center for Atmospheric Research, Boulder, CO, E-mails: casch@ucar.edu and rcabell@ucar.edu. Mary H. Hayden, University of Colorado Colorado Springs, Colorado Springs, CO, E-mail: mhayden@uccs.edu. Kirk A. Smith, Maricopa County Environmental Services Vector Control Department, Phoenix, AZ, E-mail: ksmith@mail.maricopa.gov. Michael H. Reiskind, Department of Entomology, North Carolina State University, Raleigh, NC, E-mail: mhreiski@ncsu.edu. Kacey C. Ernst, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, E-mail: kernst@email.arizona.edu.
Grubaugh ND et al. 2017. Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 546: 401–405.
Johnson TL et al. 2017. Modeling the environmental suitability for Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the contiguous United States. J Med Entomol 54: 1605–1614.
Hahn MB, Eisen RJ, Eisen L, Boegler KA, Moore CG, McAllister J, Savage HM, Mutebi J-P, 2016. Reported distribution of Aedes (Stegomyia ) aegypti and Aedes (Stegomyia ) albopictus in the United States, 1995–2016 (Diptera: Culicidae). J Med Entomol 53: 1169–1175.
Monaghan AJ et al. 2016. On the seasonal occurrence and abundance of the Zika virus vector mosquito Aedes aegypti in the contiguous United States. PLoS Curr 8: e50dfc7f46798675fc63e7d7da563da76.
Eisen L, Moore CG, 2013. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range. J Med Entomol 50: 467–478.
Morin CW, Comrie AC, Ernst K, 2013. Climate and dengue transmission: evidence and implications. Environ Health Perspect 121: 1264–1272.
Focks DA, Haile DG, Daniels E, Mount GA, 1993. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): analysis of the literature and model development. J Med Entomol 30: 1003–1017.
Morin CW, Monaghan AJ, Hayden MH, Barrera R, Ernst K, 2015. Meteorologically driven simulations of dengue epidemics in San Juan, PR. PLoS Negl Trop Dis 9: e0004002.
Xu C, Legros M, Gould F, Lloyd AL, 2010. Understanding uncertainties in model-based predictions of Aedes aegypti population dynamics. PLoS Negl Trop Dis 4: e830.
Reiskind MH, Lounibos LP, 2013. Spatial and temporal patterns of abundance of Aedes aegypti L. (Stegomyia aegypti) and Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] in southern Florida. Med Vet Entomol 27: 421–429.
Sukumaran D, 2016. A review on use of attractants and traps for host seeking Aedes aegypti mosquitoes. Indian J Nat Prod Resour IJNPR Former Nat Prod Radiance NPR 7: 207–214.
Cosgrove BA et al. 2003. Real-time and retrospective forcing in the North American land data assimilation system (NLDAS) project. J Geophys Res Atmospheres 108: 8842.
Eisen L, Monaghan AJ, Lozano-Fuentes S, Steinhoff DF, Hayden MH, Bieringer PE, 2014. The impact of temperature on the bionomics of Aedes (Stegomyia) aegypti, with special reference to the cool geographic range margins. J Med Entomol 51: 496–516.
Pless E, Gloria-Soria A, Evans BR, Kramer V, Bolling BG, Tabachnick WJ, Powell JR, 2017. Multiple introductions of the dengue vector, Aedes aegypti, into California. PLoS Negl Trop Dis 11: e0005718.
Kearney M, Porter WP, Williams C, Ritchie S, Hoffmann AA, 2009. Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia. Funct Ecol 23: 528–538.
Brady OJ et al. 2014. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasit Vectors 7: 338.
Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW, 2011. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci U S A 108: 7460–7465.
Hayden MH, Cavanaugh JL, Tittel C, Butterworth M, Haenchen S, Dickinson K, Monaghan AJ, Ernst KC, 2015. Post outbreak review: dengue preparedness and response in Key West, Florida. Am J Trop Med Hyg 93: 397–400.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 475 | 355 | 62 |
Full Text Views | 983 | 15 | 2 |
PDF Downloads | 225 | 18 | 4 |