• 1.

    Chrieki M, 2002. Echinococosis-an emerging parasite in the immigrant population. Am Fam Physician 66: 817820.

  • 2.

    Agudelo Higuita NI, Brunetti E, Mccloskey C, 2015. Cystic echinococcosis. J Clin Microbiol 54: 518523.

  • 3.

    Pavletic CF et al. 2017. Cystic echinococcosis in South America: a call for action. Rev Panam Salud Publica 41: 18.

  • 4.

    Spickler AR, Roth JA, Galyon J, Lofstedt MV, 2010. Enfermedades Emergentes y Exóticas de los Animales. Ames, IA: Center for Food Security and Public Health.

    • Search Google Scholar
    • Export Citation
  • 5.

    Craig PS, Hegglin D, Lightowlers MW, Torgerson PR, Wang Q, 2017. Echinococcosis: control and prevention. Adv Parasitol 96: 55158.

  • 6.

    Brunetti E, Garcia HH, Junghanss T, 2011. Cystic echinococcosis: chronic, complex, and still neglected. PLoS Negl Trop Dis 5: e1146.

  • 7.

    Alvarez Rojas CA, Romig T, Lightowlers MW, 2014. Echinococcus granulosus sensu lato genotypes infecting humans—review of current knowledge. Int J Parasitol 44: 918.

    • Search Google Scholar
    • Export Citation
  • 8.

    Carmena D, Cardona GA, 2013. Canine echinococcosis: global epidemiology and genotypic diversity. Acta Trop 128: 441460.

  • 9.

    Grosso G, Gruttadauria S, Biondi A, Marventano S, Mistretta A, 2012. Worldwide epidemiology of liver hydatidosis including the Mediterranean area. World J Gastroenterol 18: 14251437.

    • Search Google Scholar
    • Export Citation
  • 10.

    Casas N, Costas Otero S, Céspedes G, Sosa S, Santillán G, 2013. Detección de coproantígenos para el diagnóstico de echinococosis canina en la zona fronteriza de La Quiaca-Villazón. Rev Argent Microbiol 45: 154159.

    • Search Google Scholar
    • Export Citation
  • 11.

    Craig P, Mastin A, van Kesteren F, Boufana B, 2015. Echinococcus granulosus: epidemiology and state-of-the-art of diagnostics in animals. Vet Parasitol 213: 132148.

    • Search Google Scholar
    • Export Citation
  • 12.

    Allan JC, Craig PS, 2006. Coproantigens in taeniasis and echinococcosis. Parasitol Int 55: 7580.

  • 13.

    Pierangeli NB, Soriano SV, Roccia I, Bergagna HF, Lazzarini LE, Celescinco A, Kossman AV, Saiz MS, Basualdo JA, 2010. Usefulness and validation of a coproantigen test for dog echinococcosis screening in the consolidation phase of hydatid control in Neuquén, Argentina. Parasitol Int 59: 394399.

    • Search Google Scholar
    • Export Citation
  • 14.

    Allan JC et al. 1992. Coproantigen detection for immunodiagnosis of echinococcosis and taeniasis in dogs and humans. Parasitology 104: 347356.

  • 15.

    Himonas C, Antoniadou-Sotiriadou K, Papadopoulos E, 1994. Hydatidosis of food animals in Greece: prevalence of cysts containing viable protoscoleces. J Helminthol 68: 311313.

    • Search Google Scholar
    • Export Citation
  • 16.

    Stefanić S, Shaikenov BS, Deplazes P, Dinkel A, Torgerson PR, Mathis A, 2004. Polymerase chain reaction for detection of patent infections of Echinococcus granulosus (“sheep strain”) in naturally infected dogs. Parasitol Res 92: 347351.

    • Search Google Scholar
    • Export Citation
  • 17.

    Santos AL et al. 2006. Phytomonas serpens: cysteine peptidase inhibitors interfere with growth, ultrastructure and host adhesion. Int J Parasitol 36: 4756.

    • Search Google Scholar
    • Export Citation
  • 18.

    Bradford MM, 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248254.

    • Search Google Scholar
    • Export Citation
  • 19.

    Alzamora-Gonzales L, Echevarria RJ, Colona-Vallejos EH, Aguilar-Luis MA, de Amat-Herbozo CCD, 2016. Desarrollo de ELISA sándwich indirecto para la determinación de antígenos de excreción-secreción de Fasciola hepatica. Rev Peru Biol 23: 4752.

    • Search Google Scholar
    • Export Citation
  • 20.

    Tello R, Terashima A, Marcos LA, Machicado J, Canales M, Gotuzzo E, 2012. Highly effective and inexpensive parasitological technique for diagnosis of intestinal parasites in developing countries: spontaneous sedimentation technique in tube. Int J Infect Dis 16: e414e416.

    • Search Google Scholar
    • Export Citation
  • 21.

    Hanneman SK, Cox CD, Green KE, Kang DH, 2011. Estimating intra- and inter-assay variability in salivary cortisol. Biol Res Nurs 13: 243250.

  • 22.

    Giménez-Lirola LG et al. 2016. Detection of African swine fever virus antibodies in serum and oral fluid specimens using a recombinant protein 30 (p30) dual matrix indirect ELISA. PLoS One 11: 114.

    • Search Google Scholar
    • Export Citation
  • 23.

    Greiner M, Pfeiffer D, Smith RD, 2000. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev Vet Med 45: 2341.

    • Search Google Scholar
    • Export Citation
  • 24.

    Deplazes P, Gottstein B, Eckert J, Jenkins DJ, Ewald D, Jimenez-Palacios S, 1992. Detection of Echinococcus coproantigens by enzyme-linked immunosorbent assay in dogs, dingoes and foxes. Parasitol Res 78: 303308.

    • Search Google Scholar
    • Export Citation
  • 25.

    Elayoubi FA, Fraser A, Jenkins DJ, Craig PS, 2003. Partial characterisation of carbohydrate-rich Echinococcus granulosus coproantigens. Int J Parasitol 33: 15531559.

    • Search Google Scholar
    • Export Citation
  • 26.

    Benito A, Carmena D, 2005. Double-antibody sandwich ELISA using biotinylated antibodies for the detection of Echinococcus granulosus coproantigens in dogs. Acta Trop 95: 915.

    • Search Google Scholar
    • Export Citation
  • 27.

    Huang Y et al. 2014. Echinococcus infections in Chinese dogs: a comparison of coproantigen kits. J Helminthol 88: 189195.

  • 28.

    Morel N, Lassabe G, Elola S, Bondad M, Herrera S, Marí C, Last JA, Jensen O, Gonzalez-Sapienza G, 2013. A monoclonal antibody-based copro-ELISA kit for canine echinococcosis to support the PAHO effort for hydatid disease control in South America. PLoS Negl Trop Dis 7: 18.

    • Search Google Scholar
    • Export Citation
  • 29.

    Lahmar S, Lahmar S, Boufana B, Bradshaw H, Craig PS, 2017. Screening for Echinococcus granulosus in dogs: comparison between arecoline purgation, coproELISA and coproPCR with necropsy in pre-patent infections. Vet Parasitol 144: 287292.

    • Search Google Scholar
    • Export Citation
  • 30.

    Siles-Lucas M, Casulli A, Conraths FJ, Müller N, 2017. Laboratory diagnosis of Echinococcus spp. in human patients and infected animals. Adv Parasitol 96: 159257.

    • Search Google Scholar
    • Export Citation
  • 31.

    Malgor R, Nonaka N, Basmadjian I, Sakai H, Carámbula B, Oku Y, Carmona C, Kamiya M, 1997. Coproantigen detection in dogs experimentally and naturally infected with Echinococcus granulosus by a monoclonal antibody-based enzyme-linked immunosorbent assay. Int J Parasitol 27: 16051612.

    • Search Google Scholar
    • Export Citation
  • 32.

    Benito A, Carmena D, Joseph L, Martínez J, Guisantes JA, 2006. Dog echinococcosis in northern Spain: comparison of coproantigen and serum antibody assays with coprological exam. Vet Parasitol 142: 102111.

    • Search Google Scholar
    • Export Citation
  • 33.

    Lipman N, Jackson LR, Trudel LJ, Weis-Gracia F, 2005. Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. ILAR J 46: 258268.

    • Search Google Scholar
    • Export Citation
  • 34.

    Hajian-Tilaki K, 2013. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med 4: 627635.

    • Search Google Scholar
    • Export Citation
  • 35.

    Montalvo R, Clemente J, Castañeda L, Caro E, Cente Y, Nuñez M, 2018. Coproprevalence of canine infestation by Echinococcus granulosus in an endemic hidatidosis district in Peru. Rev Inv Vet Perú 29: 263269.

    • Search Google Scholar
    • Export Citation
 
 
 

 

 
 
 

 

 

 

 

 

 

Development and Validation of a Copro-Enzyme–Linked Immunosorbent Assay Sandwich for Detection of Echinococcus granulosus–Soluble Membrane Antigens in Dogs

View More View Less
  • 1 Facultad de Medicina Veterinaria y Zootecnia, Universidad Peruana Cayetano Heredia, Lima, Perú;
  • | 2 Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú;
  • | 3 Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú;
  • | 4 College of Veterinary Medicine, Iowa State University, Ames, Iowa;
  • | 5 Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland

Cystic echinococcosis (CE) is a parasitic zoonosis caused by the larval stage of the tapeworm Echinococcus granulosus. Detection of the adult stage in the canine definitive host is essential for estimating infection rates, surveillance and monitoring of CE control programs. This study sought to develop and validate a coproantigen sandwich enzyme–linked immunosorbent assay (copro-ELISA), based on antibodies against E. granulosus–soluble membrane antigens (EGMA), that is capable of distinguishing infected and noninfected dogs. Anti-E. granulosus polyclonal immunoglobulin G antibodies were obtained from rabbit antiserum against EGMA. Optimization of the test was performed with 51 positive and 56 negative stool samples of canine echinococcosis. Specificity, sensitivity, cross-reactivity, intra- and inter-assay precision, and over time detection were evaluated. According to the receiver operating characteristic analysis, the diagnostic sensitivity and specificity were 96.1% (CI: 85.9–99.6) and 98.2% (CI: 89.5–100), respectively. Negative and positive predictive values were 96.5% (CI: 91.7–100) and 98% (CI: 94.1–100), respectively. No cross-reactivity with Taenia hydatigena, Dipylidium caninum, or Toxocara canis was observed. Intra- and inter-assay repeatability showed values of less than 15% of the variation coefficient. The over time detection was from 20 to 27 days postinfection with E. granulosus. The copro-ELISA based on EGMA detection offers a simplified in-house development of diagnostic testing. This assay showed high specificity and sensitivity and had no cross-reactivity with other parasites. Further studies and development of this test in a kit format may be useful for the detection of active infection in dogs living in CE endemic regions.

Author Notes

Address correspondence to Luis M. Jara, Facultad de Medicina Veterinaria y Zootecnia, Universidad Peruana Cayetano Heredia, Ave. Honorio Delgado 430, Lima, Perú. E-mail: luis.jara.s@upch.pe

Financial support: This work was supported by Servicio Nacional de Sanidad Agraria (SENASA, Peru), Universidad Nacional Mayor de San Marcos (Peru) and Pan American Health Organization (PAHO).

Authors’ addresses: Luis M. Jara, Universidad Peruana Cayetano Heredia, Lima, Perú, E-mail: luis.jara.s@upch.pe. Magaly Rodriguez and Manuela Verastegui, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú, E-mails: magaly.rodriguez.r27@gmail.com and manuela.verastegui@upch.pe. Faride Altamirano, Antonio Herrera, and Cesar M. Gavidia, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú, E-mails: faride.az2@gmail.com, antoniovet99@gmail.com, and cgavidiac@unmsm.edu.pe. Luis G. Gímenez-Lirola, College of Veterinary Medicine, Iowa State University, Ames, IA, E-mail: luisggl@iastate.edu. Robert H. Gilman, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, E-mail: gilmanbob@gmail.com.

Save